Cite this article as: |
M. Fadaeinia and Ramin Raiszadeh, Bonding of compound casted Ti/Al bimetal by heat treatment, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1515-1524. https://doi.org/10.1007/s12613-020-2107-z |
Ramin Raiszadeh E-mail: rraiszadeh@yahoo.com
The formation mechanism of the bonding between compound cast Al/Ti bimetal during a heat treatment regime was investigated. Commercially pure Al was cast and melt on a Ti bar in a steel tube, followed by heat treatment on the compound cast Ti/Al bimetal for different periods of time once the Al melt was solidified. No bonding was observed between the two metals after the initial casting, which can be attributed to the presence of oxide films on the liquid Al and solid Ti alloys and the trapped atmosphere between them. The effect of these layers in preventing the formation of bonding was eliminated after heat treating the cast part at ~973 K (~700°C) for at least 15 min, and the metals started to bond with each other. A detailed description of this bonding mechanism is presented in this paper.
[1] |
G.R. Zare, M. Divandari, and H. Arabi, Investigation on interface of Al/Cu couples in compound casting, Mater. Sci. Technol., 29(2013), No. 2, p. 190. doi: 10.1179/1743284712Y.0000000096
|
[2] |
J. Pan, M. Yoshida, G. Sasaki, H. Fukunaga, H. Fujimura, and M. Matsuura, Ultrasonic insert casting of aluminum alloy, Scripta Mater., 43(2000), No. 2, p. 155. doi: 10.1016/S1359-6462(00)00385-7
|
[3] |
M. Divandari and A.R.V. Golpayegani, Study of Al/Cu rich phases formed in A356 alloy by inserting Cu wire in pattern in LFC process, Mater. Des., 30(2009), No. 8, p. 3279. doi: 10.1016/j.matdes.2009.01.008
|
[4] |
M. Scanlan, D.J. Browne, and A. Bates, New casting route to novel functionally gradient light alloys, Mater. Sci. Eng. A, 413-414(2005), p. 66. doi: 10.1016/j.msea.2005.09.004
|
[5] |
J.S. Ho, C.B. Lin, and C.H. Liu, Effect of continuous cooling heat treatment on interface characteristics of S45C/copper compound casting, J. Mater. Sci., 39(2004), No. 7, p. 2473. doi: 10.1023/B:JMSC.0000020012.88809.33
|
[6] |
E. Hajjari, M. Divandari, S.H. Razavi, S.M. Emami, T. Homma, and S. Kamado, Dissimilar joining of Al/Mg light metals by compound casting process, J. Mater. Sci., 46(2011), No. 20, p. 6491. doi: 10.1007/s10853-011-5595-4
|
[7] |
K.J.M. Papis, B. Hallstedt, J.F. Löffler, and P.J. Uggowitzer, Interface formation in aluminium–aluminium compound casting, Acta Mater., 56(2008), No. 13, p. 3036. doi: 10.1016/j.actamat.2008.02.042
|
[8] |
T.M. Wang, C.H. Liang, Z.N. Chen, Y.P. Zheng, H.J. Kang, and W. Wang, Development of an 8090/3003 bimetal slab using a modified direct-chill casting process, J. Mater. Process. Technol., 214(2014), No. 9, p. 1806. doi: 10.1016/j.jmatprotec.2014.03.029
|
[9] |
M. Yousefi and H. Doostmohammadi, Microstructure characterization and formation mechanism of functionally graded Al–TiAl3 insitu composite by liquid–solid interaction, J. Alloys Compd., 766(2018), p. 721. doi: 10.1016/j.jallcom.2018.07.011
|
[10] |
S.G. Robertson, I.M. Ritchie, and D.M. Druskovich, A kinetic and electrochemical study of the zincate immersion process for aluminium, J. Appl. Electrochem., 25(1995), No. 7, p. 659.
|
[11] |
M. Rübner, M. Günzl, C. Körner, and R.F. Singer, Aluminium–aluminium compound fabrication by high pressure die casting, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 7024. doi: 10.1016/j.msea.2011.05.076
|
[12] |
C. Koerner, M. Schwankl, and D. Himmler, Aluminum–aluminum compound castings by electroless deposited zinc layers, J. Mater. Process. Technol., 214(2014), No. 5, p. 1094. doi: 10.1016/j.jmatprotec.2013.12.014
|
[13] |
F.N. Bakhtiarani and R. Raiszadeh, The behaviour of double oxide film defects in Al–4.5wt% Mg melt, J. Mater. Sci., 46(2011), No. 5, p. 1305. doi: 10.1007/s10853-010-4916-3
|
[14] |
F.N. Bakhtiarani and R. Raiszadeh, Healing of double-oxide film defects in commercial purity aluminum melt, Metall. Mater. Trans. B, 42(2011), No. 2, p. 331. doi: 10.1007/s11663-011-9480-y
|
[15] |
S. Amirinejhad, R. Raiszadeh, and H. Doostmohammadi, Study of double oxide film defect behaviour in liquid Al–Mg alloys, Int. J. Cast Met. Res., 26(2013), No. 6, p. 330. doi: 10.1179/1743133613Y.0000000067
|
[16] |
F. Khaleghifar, R. Raiszadeh, and H. Doostmohammadi, Effect of ca on the behavior of double oxide film defects in commercially pure aluminum melt, Metall. Mater. Trans. B, 46(2015), No. 2, p. 1044. doi: 10.1007/s11663-014-0240-7
|
[17] |
E.A. Brandes and G.B. Brook, Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, Oxford, 1998.
|
[18] |
B. Feng, J. Weng, B.C. Yang, J.Y. Chen, J.Z. Zhao, L. He, S.K. Qi, and X.D. Zhang, Surface characterization of titanium and adsorption of bovine serum albumin, Mater. Charact., 49(2002), No. 2, p. 129. doi: 10.1016/S1044-5803(02)00341-8
|
[19] |
J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, and E. Mahé, Structure and composition of passive titanium oxide films, Mater. Sci. Eng. B, 47(1997), No. 3, p. 235. doi: 10.1016/S0921-5107(97)00043-3
|
[20] |
A. Shafaei and R. Raiszadeh, Reduced pressure test verification of healing of double oxide film defects in Al–Mg alloys, Metall. Mater. Trans. B, 45(2014), No. 6, p. 2486. doi: 10.1007/s11663-014-0135-7
|
[21] |
M. Aryafar, R. Raiszadeh, and A. Shalbafzadeh, Healing of double oxide film defects in A356 aluminium melt, J. Mater. Sci., 45(2010), No. 11, p. 3041. doi: 10.1007/s10853-010-4308-8
|
[22] |
D.J. Harach and K.S. Vecchio, Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air, Metall. Mater. Trans. A, 32(2001), No. 6, p. 1493. doi: 10.1007/s11661-001-0237-0
|