K. Chandrakanta, R. Jena, P. Pal, Md.F. Abdullah, S.D. Kaushik, and A.K. Singh, Effect of Co substitution on the structural, dielectric and optical properties of KBiFe2O5, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1861-1867. https://doi.org/10.1007/s12613-020-2110-4
Cite this article as:
K. Chandrakanta, R. Jena, P. Pal, Md.F. Abdullah, S.D. Kaushik, and A.K. Singh, Effect of Co substitution on the structural, dielectric and optical properties of KBiFe2O5, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1861-1867. https://doi.org/10.1007/s12613-020-2110-4
Research Article

Effect of Co substitution on the structural, dielectric and optical properties of KBiFe2O5

+ Author Affiliations
  • Corresponding author:

    A.K. Singh    E-mail: singhanil@nitrkl.ac.in

  • Received: 12 January 2020Revised: 23 May 2020Accepted: 28 May 2020Available online: 31 May 2020
  • Cobalt (Co)-modified brownmillerite KBiFe2O5 (KBFO; [KBiFe2(1−x)Co2xO5 (x = 0, 0.05)]) polycrystalline is synthesized following the solid-state reaction route. Rietveld refinement of X-ray diffraction data confirmed the phase purity of KBFO and KBiFe1.9Co0.1O5 (KBFCO). The optical bandgap energy (Eg) of KBFO decreased from 1.59 to 1.51 eV because of Co substitution. The decrease in bandgap can be attributed to the tilting of the Fe–O tetrahedral structure of KBFCO. The observed room-temperature Raman peaks of KBFCO shifted by 3 cm−1 toward a lower wavenumber than that of KBFO. The shift in Raman active modes can be attributed to the change in the bond angles and bond lengths of the Fe–O tetrahedral structure and modification in response to oxygen deficiency in KBFO because of Co doping. Compared with that of KBFO, the frequency-dependent dielectric constant and dielectric loss of KBFCO decrease at room temperature, which is a consequence of the reduction in oxygen migration and modification in response to vibrational modes present in the sample.

  • loading
  • [1]
    M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, The evolution of multiferroics, Nat. Rev. Mater., 1(2016), art. No. 16046. doi: 10.1038/natrevmats.2016.46
    [2]
    B. Mettout, P. Tolédano, A.S.B. Sombra, A.F.G. Furtado Filho, J.P.C. do Nascimento, M.A. Santos da Silva, P. Gisse, and H. Vasseur, Magnetoelectric, photovoltaic, and magnetophotovoltaic effects in KBiFe2O5, Phys. Rev. B, 93(2016), No. 19, art. No. 195123. doi: 10.1103/PhysRevB.93.195123
    [3]
    G.H. Zhang, H. Wu, G.B. Li, Q.Z. Huang, C.Y. Yang, F.Q. Huang, F.H. Liao, and J.H. Lin, New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect, Sci. Rep., 3(2013), art. No. 1265. doi: 10.1038/srep01265
    [4]
    M.A. Jalaja and S. Dutta, Switchable photovoltaic properties of multiferroic KBiFe2O5, Mater. Res. Bull., 88(2017), p. 9. doi: 10.1016/j.materresbull.2016.12.008
    [5]
    D.S. Vavilapalli, K. Srikanti, R. Mannam, B. Tiwari, M.K. K, M.S.R. Rao, and S. Singh, Photoactive brownmillerite multiferroic KBiFe2O5 and its potential application in sunlight-driven photocatalysis, ACS Omega, 3(2018), No. 12, p. 16643. doi: 10.1021/acsomega.8b01744
    [6]
    M.A. Jalaja and S. Dutta, Ferroelectrics and multiferroics for next generation photovoltaics, Adv. Mater. Lett., 6(2015), No. 7, p. 568. doi: 10.5185/amlett.2015.5878
    [7]
    J. Li, G.H. Zhang, L.K. Fan, G.Q. Huang, Z.P. Gao, and T. Zeng, Enhanced visible-light-driven photocatalytic activity of multiferroic KBiFe2O5 by adjusting pH value, J. Inorg. Mater., 33(2018), No. 7, art. No. 805. doi: 10.15541/jim20170610
    [8]
    D.S. Vavilapalli, A.A. Melvin, S. Kavita, A.K. Yadav, S.N. Jha, D. Bhattacharyya, S.C. Sarma, S.C. Peter, M.S. Ramachandra Rao, and S. Singh, Multifunctional brownmillerite KBiFe2O5: Structural, magneto-dielectric, optical, photoelectrochemical studies and enhanced photocatalytic activity over perovskite BiFeO3, Sol. Energy Mater. Sol. Cells, 200(2019), art. No. 109940. doi: 10.1016/j.solmat.2019.109940
    [9]
    Q.Y. Xu, H.F. Zai, D. Wu, T. Qiu, and M.X. Xu, The magnetic properties of Bi(Fe0.95Co0.05)O3 ceramics, Appl. Phys. Lett., 95(2009), No. 11, art. No. 112510. doi: 10.1063/1.3233944
    [10]
    Y.S. Chiang, C.S. Tu, P.Y. Chen, C.S. Chen, J. Anthoniappen, Y. Ting, T.S. Chan, and V.H. Schmidt, Magnetic and phonon transitions in B-site Co doped BiFeO3 ceramics, Ceram. Int., 42(2016), No. 11, p. 13104. doi: 10.1016/j.ceramint.2016.05.097
    [11]
    U. Khan, N. Adeela, K. Javed, S. Riaz, H. Ali, M. Iqbal, X.F. Han, and S. Naseem, Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles, J. Nanopart. Res., 17(2015), art. No. 429. doi: 10.1007/s11051-015-3233-9
    [12]
    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2(1969), No. 2, p. 65. doi: 10.1107/S0021889869006558
    [13]
    M. Zhang, Z.H. Wang, S.Y. Lin, Y. Wang, and Y.H. Pan, Investigation on a new multiferroic compound KBiFe2O5: Structural, optical, electrical and magnetic properties, J. Alloys Compd., 699(2017), p. 561. doi: 10.1016/j.jallcom.2017.01.041
    [14]
    X.Z. Zhai, H.M. Deng, W.L. Zhou, P.X. Yang, J.H. Chu, and Z. Zheng, Structural, optical and magnetic tunability in KBiFe2O5 multiferroics, RSC Adv., 5(2015), No. 100, p. 82351. doi: 10.1039/C5RA16030H
    [15]
    M.M. Rhaman, M.A. Matin, M.N. Hossain, F.A. Mozahid, M.A. Hakim, and M.F. Islam, Bandgap engineering of cobalt-doped bismuth ferrite nanoparticles for photovoltaic applications, Bull. Mater. Sci., 42(2019), art. No. 190. doi: 10.1007/s12034-019-1871-8
    [16]
    D.L. Wood and J. Tauc, Weak absorption tails in amorphous semiconductors, Phys. Rev. B, 5(1972), No. 8, p. 3144. doi: 10.1103/PhysRevB.5.3144
    [17]
    X.Z. Zhai, H.M. Deng, W.L. Zhou, P.X. Yang, J.H. Chu, and Z. Zheng, Optical and magnetic properties of KBiFe2O5 thin films fabricated by chemical solution deposition, Mater. Lett., 161(2015), p. 423. doi: 10.1016/j.matlet.2015.09.018
    [18]
    R. Rai and M. Molli, Effect of La doping on structural, magnetic, and optical properties of KBiFe2O5, J. Mater. Sci.: Mater. Electron., 30(2019), No. 4, p. 4318. doi: 10.1007/s10854-019-00724-3
    [19]
    A. Sarkar and G.G. Khan, The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures, Nanoscale, 11(2019), No. 8, p. 3414. doi: 10.1039/C8NR09666J
    [20]
    G.H. Zhang, F.L. Liu, T.T. Gu, Y.S. Zhao, N.N. Li, W.G. Yang, and S.H. Feng, Ferroelectrics: enhanced ferroelectric and visible-light photoelectric properties in multiferroic KBiFe2O5 via pressure-induced phase transition (Adv. Electron. Mater. 3/2017), Adv. Electron. Mater., 3(2017), No. 3.
    [21]
    W.W. Mao, X.F. Wang, Y.M. Han, X.A. Li, Y.T. Li, Y.F. Wang, Y.W. Ma, X.M. Feng, T. Yang, J.P. Yang, and W. Huang, Effect of Ln (Ln = La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles, J. Alloys Compd., 584(2014), p. 520. doi: 10.1016/j.jallcom.2013.09.117
    [22]
    A. Singh, R. Chatterjee, S.K. Mishra, P.S.R. Krishna, and S.L. Chaplot, Origin of large dielectric constant in La modified BiFeO3–PbTiO3 multiferroic, J. Appl. Phys., 111(2012), No. 1, art. No. 014113. doi: 10.1063/1.3675279
    [23]
    J.J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, and J.R. Hardy, Large dielectric constant and Maxwell–Wagner relaxation in Bi2∕3Cu3Ti4O12, Phys. Rev. B, 70(2004), No. 14, art. No. 144106. doi: 10.1103/PhysRevB.70.144106
    [24]
    M.M. Hoque, A. Dutta, S. Kumar, and T.P. Sinha, Dielectric relaxation and conductivity of Ba(Mg1/3Ta2/3)o3 and Ba(Zn1/3Ta2/3)o3, J. Mater. Sci. Technol., 30(2014), No. 4, p. 311. doi: 10.1016/j.jmst.2013.10.021
    [25]
    A.L. Si, M. Kiani, and S, Rizwan, Structural, magnetic and dielectric properties of Sm3+ and Mn2+ co-doped BiFeO3 nanoparticles, J. Powder Metall. Min., 6(2017), No. 1, p. 1. doi: 10.4172/2168-9806.1000163
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(2349) PDF Downloads(47) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return