Cite this article as: |
Liu-ye Sun, Bo-rui Liu, Tong Wu, Guan-ge Wang, Qing Huang, Yue-feng Su, and Feng Wu, Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 991-1000. https://doi.org/10.1007/s12613-020-2115-z |
Qing Huang E-mail: huangqing3121@sina.com
The reductant is a critical factor in the hydrometallurgical recycling of valuable metals from spent lithium-ion batteries (LIBs). There is limited information regarding the use of SnCl2 as a reductant with organic acid (maleic acid) for recovering valuable metals from spent LiCoO2 material. In this study, the leaching efficiencies of Li and Co with 1 mol·L−1 of maleic acid and 0.3 mol·L−1 of SnCl2 were found to be 98.67% and 97.5%, respectively, at 60°C and a reaction time of 40 min. We investigated the kinetics and thermodynamics of the leaching process in this study to better understand the mechanism of the leaching process. Based on a comparison with H2O2 with respect to leaching efficiency, the optimal leaching parameters, and the activation energy, we determined that it is feasible to replace H2O2 with SnCl2 as a leaching reductant in the leaching process. In addition, when SnCl2 is used in the acid-leaching process, Sn residue in the leachate may have a positive effect on the re-synthesis of nickel-rich cathode materials. Therefore, the results of this study provide a potential direction for the selection of reductants in the hydrometallurgical recovery of valuable metals from spent LIBs.
[1] |
V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: A review, Energy Environ. Sci., 4(2011), No. 9, p. 3243. doi: 10.1039/c1ee01598b
|
[2] |
Q.Y. Zhang, Y.F. Su, L. Chen, Y. Lu, L.Y. Bao, T. He, J. Wang, R.J. Chen, J. Tan, and F. Wu, Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements, J. Power Sources, 396(2018), p. 734. doi: 10.1016/j.jpowsour.2018.06.091
|
[3] |
X.P. Chen, C.B. Luo, J.X. Zhang, J.R. Kong, and T. Zhou, Sustainable recovery of metals from spent lithium-ion batteries: A green process, ACS Sustainable Chem. Eng., 3(2015), No. 12, p. 3104. doi: 10.1021/acssuschemeng.5b01000
|
[4] |
W. Song, J.W. Liu, L. You, S.Q. Wang, Q.W. Zhou, Y.L. Gao, R.N. Yin, W.J. Xu, and Z.P. Guo, Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application, J. Power Sources, 419(2019), p. 192. doi: 10.1016/j.jpowsour.2019.02.065
|
[5] |
Y. Yang, S.L. Song, S.Y. Lei, W. Sun, H.S. Hou, F. Jiang, X.B. Ji, W.Q. Zhao, and Y.H. Hu, A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery, Waste Manage., 85(2019), p. 529. doi: 10.1016/j.wasman.2019.01.008
|
[6] |
L.Q. Zhuang, C.H. Sun, T. Zhou, H. Li, and A.Q. Dai, Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant, Waste Manage., 85(2019), p. 175. doi: 10.1016/j.wasman.2018.12.034
|
[7] |
Y.P. Fu, Y.Q. He, L.L. Qu, Y. Feng, J.L. Li, J.S. Liu, G.W. Zhang, and W.N. Xie, Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system, Waste Manage., 88(2019), p. 191. doi: 10.1016/j.wasman.2019.03.044
|
[8] |
X.H. Zhong, W. Liu, J.W. Han, F. Jiao, W.Q. Qin, T. Liu, and C.X. Zhao, Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries, Waste Manage., 89(2019), p. 83. doi: 10.1016/j.wasman.2019.03.068
|
[9] |
L.P. He, S.Y. Sun, X.F. Song, and J.G. Yu, Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries, Waste Manage., 64(2017), p. 171. doi: 10.1016/j.wasman.2017.02.011
|
[10] |
G.X. Ren, S.W. Xiao, M.Q. Xie, B. Pan, J. Chen, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO–SiO2–Al2O3 slag system, Trans. Nonferrous Met. Soc. China, 27(2017), No. 2, p. 450. doi: 10.1016/S1003-6326(17)60051-7
|
[11] |
X.P. Chen and T. Zhou, Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media, Waste Manage. Res., 32(2014), No. 11, p. 1083. doi: 10.1177/0734242X14557380
|
[12] |
Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, and B. Xin, Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery, J. Clean Prod., 116(2016), p. 249. doi: 10.1016/j.jclepro.2016.01.001
|
[13] |
Y.N. Zhang, Y.Y. Zhang, Y.J. Zhang, P. Dong, Q. Meng, and M.L. Xu, Novel efficient regeneration of high-performance Li1.2[Mn0.56Ni0.16Co0.08]O2 cathode materials from spent LiMn2O4 batteries, J. Alloys Compd., 783(2019), p. 357. doi: 10.1016/j.jallcom.2018.12.359
|
[14] |
P.C. Liu, L. Xiao, Y.F. Chen, Y.W. Tang, J. Wu, and H. Chen, Recovering valuable metals from LiNixCoyMn1−x−
|
[15] |
Q. Meng, Y.J. Zhang, P. Dong, and F. Liang, A novel process for leaching of metals from LiNi1/3Co1/3Mn1/3O2 material of spent lithium ion batteries: Process optimization and kinetics aspects, J. Ind. Eng. Chem., 61(2018), p. 133. doi: 10.1016/j.jiec.2017.12.010
|
[16] |
M. Joulié, R. Laucournet, and E. Billy, Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries, J. Power Sources, 247(2014), p. 551. doi: 10.1016/j.jpowsour.2013.08.128
|
[17] |
S.P. Barik, G. Prabaharan, and L. Kumar, Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study, J. Cleaner Prod., 147(2017), p. 37. doi: 10.1016/j.jclepro.2017.01.095
|
[18] |
K. Tanong, L. Coudert, G. Mercier, and J.F. Blais, Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process, J. Environ. Manage., 181(2016), p. 95. doi: 10.1016/j.jenvman.2016.05.084
|
[19] |
P. Meshram, B.D. Pandey, and T.R. Mankhand, Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects, Waste Manage., 45(2015), p. 306. doi: 10.1016/j.wasman.2015.05.027
|
[20] |
P. Meshram, B.D. Pandey, and T.R. Mankhand, Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching, Chem. Eng. J., 281(2015), p. 418. doi: 10.1016/j.cej.2015.06.071
|
[21] |
E.G. Pinna, M.C. Ruiz, M.W. Ojeda, and M.H. Rodriguez, Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors, Hydrometallurgy, 167(2017), p. 66. doi: 10.1016/j.hydromet.2016.10.024
|
[22] |
L.P. He, S.Y. Sun, Y.Y. Mu, X.F. Song, and J.G. Yu, Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant, ACS Sustainable Chem. Eng., 5(2017), No. 1, p. 714. doi: 10.1021/acssuschemeng.6b02056
|
[23] |
J. de Oliveira Demarco, J. Stefanello Cadore, F. da Silveira de Oliveira, E. Hiromitsu Tanabe, and D. Assumpção Bertuol, Recovery of metals from spent lithium-ion batteries using organic acids, Hydrometallurgy, 190(2019), art. No. 105169. doi: 10.1016/j.hydromet.2019.105169
|
[24] |
H. Setiawan, H.T.B.M. Petrus, and I. Perdana, Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 98. doi: 10.1007/s12613-019-1713-0
|
[25] |
L. Li, E.S. Fan, Y.B. Guan, X.X. Zhang, Q. Xue, L. Wei, F. Wu, and R.J. Chen, Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system, ACS Sustainable Chem. Eng., 5(2017), No. 6, p. 5224. doi: 10.1021/acssuschemeng.7b00571
|
[26] |
L. Li, W.J. Qu, X.X. Zhang, J. Lu, R.J. Chen, F. Wu, and K. Amine, Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries, J. Power Sources, 282(2015), p. 544. doi: 10.1016/j.jpowsour.2015.02.073
|
[27] |
N. Vieceli, C.A. Nogueira, C. Guimarães, M.F.C. Pereira, F.O. Durão, and F. Margarido, Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite, Waste Manage., 71(2018), p. 350. doi: 10.1016/j.wasman.2017.09.032
|
[28] |
P. Meshram, Abhilash, B.D. Pandey, T.R. Mankhand, and H. Deveci, Comparision of different reductants in leaching of spent lithium ion batteries, JOM, 68(2016), No. 10, p. 2613. doi: 10.1007/s11837-016-2032-9
|
[29] |
W.G. Lv, Z.H. Wang, H.B. Cao, X.H. Zheng, W. Jin, Y. Zhang, and Z. Sun, A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride, Waste Manage., 79(2018), p. 545. doi: 10.1016/j.wasman.2018.08.027
|
[30] |
G. Granata, E. Moscardini, F. Pagnanelli, F. Trabucco, and L. Toro, Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: Lab scale tests and process simulations, J. Power Sources, 206(2012), p. 393. doi: 10.1016/j.jpowsour.2012.01.115
|
[31] |
F. Pagnanelli, E. Moscardini, G. Granata, S. Cerbelli, L. Agosta, A. Fieramosca, and L. Toro, Acid reducing leaching of cathodic powder from spent lithium ion batteries: Glucose oxidative pathways and particle area evolution, J. Ind. Eng. Chem., 20(2014), No. 5, p. 3201. doi: 10.1016/j.jiec.2013.11.066
|
[32] |
Q. Meng, Y.J. Zhang, and P. Dong, A combined process for cobalt recovering and cathode material regeneration from spent LiCoO2 batteries: Process optimization and kinetics aspects, Waste Manage., 71(2018), p. 372. doi: 10.1016/j.wasman.2017.10.030
|
[33] |
Y.J. Zhang, Q. Meng, P. Dong, J.G. Duan, and Y. Lin, Use of grape seed as reductant for leaching of cobalt from spent lithium-ion batteries, J. Ind. Eng. Chem., 66(2018), p. 86. doi: 10.1016/j.jiec.2018.05.004
|
[34] |
L. Li, Y.F. Bian, X.X. Zhang, Q. Xue, E.S. Fan, F. Wu, and R.J. Chen, Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study, J. Power Sources, 377(2018), p. 70. doi: 10.1016/j.jpowsour.2017.12.006
|
[35] |
X.Q. Meng, H.B. Cao, J. Hao, P.G. Ning, G.J. Xu, and Z. Sun, Sustainable preparation of LiNi1/3Co1/3Mn1/3O2–V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag, ACS Sustainable Chem. Eng., 6(2018), No. 5, p. 5797. doi: 10.1021/acssuschemeng.7b03880
|
[36] |
S. Dhiman and B. Gupta, Cyphos IL 104 assisted extraction of indium and recycling of indium, tin and zinc from discarded LCD screen, Sep. Purif. Technol., 237(2020), art. No. 116407. doi: 10.1016/j.seppur.2019.116407
|
[37] |
A. Porvali, A. Chernyaev, S. Shukla, and M. Lundström, Lithium ion battery active material dissolution kinetics in Fe(II)/Fe(III) catalyzed Cu–H2SO4 leaching system, Sep. Purif. Technol., 236(2020), art. No. 116305. doi: 10.1016/j.seppur.2019.116305
|
[38] |
B.R. Liu, Q. Huang, Y.F. Su, L.Y. Sun, T. Wu, G.G. Wang, R.M. Kelly, and F. Wu, Maleic, glycolic and acetoacetic acids-leaching for recovery of valuable metals from spent lithium-ion batteries: Leaching parameters, thermodynamics and kinetics, R. Soc. Open Sci., 6(2019), No. 9, art. No. 191061. doi: 10.1098/rsos.191061
|
[39] |
X.P. Chen, D.Z. Kang, L. Cao, J.Z. Li, T. Zhou, and H.R. Ma, Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step, Sep. Purif. Technol., 210(2019), p. 690. doi: 10.1016/j.seppur.2018.08.072
|
[40] |
Q. Meng, Y.J. Zhang, and P. Dong, Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithium-ion batteries, J. Cleaner Prod., 180(2018), p. 64. doi: 10.1016/j.jclepro.2018.01.101
|
[41] |
H. Ku, Y. Jung, M. Jo, S. Park, S. Kim, D. Yang, K. Rhee, E.M. An, J. Sohn, and K. Kwon, Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching, J. Hazard. Mater., 313(2016), p. 138. doi: 10.1016/j.jhazmat.2016.03.062
|
[42] |
L. Li, Y. F. Bian, X.X. Zhang, Y.B. Guan, E.S. Fan, F. Wu, and R.J. Chen, Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching, Waste Manage., 71(2018), p. 362. doi: 10.1016/j.wasman.2017.10.028
|
[43] |
C.S. dos Santos, J.C. Alves, S.P. da Silva, L. Evangelista Sita, P.R.C. da Silva, L.C. de Almeida, and J. Scarminio, A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO2 from spent mobile phone batteries, J. Hazard. Mater., 362(2019), p. 458. doi: 10.1016/j.jhazmat.2018.09.039
|
[44] |
M. Eilers-Rethwisch, M. Winter, and F.M. Schappacher, Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2−xMx]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials, J. Power Sources, 387(2018), p. 101. doi: 10.1016/j.jpowsour.2018.02.080
|