Yong Wang, Ai-xiang Wu, Zhu-en Ruan, Zhi-hui Wang, Zong-su Wei, Gang-feng Yang, and Yi-ming Wang, Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1430-1437. https://doi.org/10.1007/s12613-020-2116-y
Cite this article as:
Yong Wang, Ai-xiang Wu, Zhu-en Ruan, Zhi-hui Wang, Zong-su Wei, Gang-feng Yang, and Yi-ming Wang, Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1430-1437. https://doi.org/10.1007/s12613-020-2116-y
Research Article

Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process

+ Author Affiliations
  • Corresponding authors:

    Ai-xiang Wu    E-mail: wuaixiang@126.com

    Zhu-en Ruan    E-mail: ziyuan0902rze@163.com

  • Received: 29 March 2020Revised: 14 May 2020Accepted: 8 June 2020Available online: 10 June 2020
  • To further clarify the dewatering performance and torque evolution during the tailings thickening process, a self-made rake was connected to a rheometer to monitor the shear stress and torque. The dewatering performance of the total tailings was greatly improved to a solid mass fraction of 75.33% in 240 min. The dewatering process could be divided into three stages: the rapid torque growth period, damping torque growth period, and constant torque thickening zone. The machine restart was found to have a significant effect on the rake torque; it could result in rake blockage. Furthermore, the simultaneous evolution of the torque and solid mass fraction of thickened tailings was analyzed. A relationship between the torque and the solid mass fraction was established, which followed a power function. Both the experimental and theoretical results provide a reference for the deep cone thickener design and operation to enhance the dewatering performance.

  • loading
  • [1]
    C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
    [2]
    S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Clean. Prod., 247(2020), art. No. 119590. doi: 10.1016/j.jclepro.2019.119590
    [3]
    D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste back fill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
    [4]
    D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
    [5]
    T. du Toit and M. Crozier, Khumani iron ore mine paste disposal and water recovery system, J. South. Afr. Inst. Min. Metall., 112(2012), No. 3, p. 211.
    [6]
    H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Clean. Prod., 245(2020), art. No. 118882. doi: 10.1016/j.jclepro.2019.118882
    [7]
    M. Unesi, M. Noaparast, S.Z. Shafaei, and E. Jorjani, Modeling the effects of ore properties on water recovery in the thickening process, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 851. doi: 10.1007/s12613-014-0981-y
    [8]
    M. Edraki, T. Baumgartl, E. Manlapig, D. Bradshaw, D.M. Franks, and C.J. Moran, Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches, J. Clean. Prod., 84(2014), p. 411. doi: 10.1016/j.jclepro.2014.04.079
    [9]
    A.X. Wu, Z.E. Ruan, R. Bürger, S.H.Y, J.D. Wang, and Y. Wang, Optimization of flocculation and settling parameters of tailings slurry by response surface methodology, Miner. Eng., 156(2020), art. No. 106488. doi: 10.1016/j.mineng.2020.106488
    [10]
    H.Z. Jiao, S.F. Wang, A.X. Wu, H.M. Shen, and J.D. Wang, Cementitious property of NaAlO2-activated Ge slag as cement supplement, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1594. doi: 10.1007/s12613-019-1901-y
    [11]
    A.X. Wu, Z.E. Ruan, C.P. Li, S.Y. Wang, Y.M. Wang, and J.D. Wang, Numerical study of flocculation settling and thickening of whole-tailings in deep cone thickener using CFD approach, J. Cent. South Univ., 26(2019), No. 3, p. 711. doi: 10.1007/s11771-019-4041-7
    [12]
    R. Jewell and A.B. Fourie, Paste and Thickened Tailings: A Guide, Australian Centre for Geomechanics, Perth, 2012.
    [13]
    F. Concha and R. Bürger, A century of research in sedimentation and thickening, KONA Powder Part. J., 20(2002), p. 38. doi: 10.14356/kona.2002009
    [14]
    M. Tanguay, P. Fawell, and S. Adkins, Modelling the impact of two different flocculants on the performance of a thickener feedwell, Appl. Math. Modell., 38(2014), No. 17-18, p. 4262. doi: 10.1016/j.apm.2014.04.047
    [15]
    A. Farkish and M. Fall, Rapid dewatering of oil sand mature fine tailings using super absorbent polymer (SAP), Miner. Eng., 50-51(2013), p. 38. doi: 10.1016/j.mineng.2013.06.002
    [16]
    S. Wang, X.J. Wang, Q.S. Chen, X.P. Song, J.C. Qin, and Y.X. Ke, Influence of coarse tailings on flocculation settlement, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1065. doi: 10.1007/s12613-019-1948-9
    [17]
    A.T. Owen, T.V. Nguyen, and P.D. Fawell, The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners, Int. J. Miner. Process., 93(2009), No. 2, p. 115. doi: 10.1016/j.minpro.2009.07.001
    [18]
    T.V. Nguyen, J.B. Farrow, J. Smith, and P.D. Fawell, Design and development of a novel thickener feedwell using computational fluid dynamics, J. South. Afr. Inst. Min. Metall., 112(2012), No. 11, p. 939.
    [19]
    R.B. White, I.D. Šutalo, and T. Nguyen, Fluid flow in thickener feedwell models, Miner. Eng., 16(2003), No. 2, p. 145. doi: 10.1016/S0892-6875(02)00252-2
    [20]
    M. Ebrahimzadeh Gheshlaghi, A. Soltani Goharrizi, and A. Aghajani Shahrivar, Simulation of a semi-industrial pilot plant thickener using CFD approach, Int. J. Min. Sci. Technol., 23(2013), No. 1, p. 63. doi: 10.1016/j.ijmst.2013.01.010
    [21]
    F. Concha, J. P. Segovia, S.Vergara, A. Pereira, E. Elorza, P. Leonelli, and F.Betancourt, Audit industrial thickeners with new on-line instrumentation, Powder. Technol., 314(2017), p. 680. doi: 10.1016/j.powtec.2017.03.040
    [22]
    A.X. Wu, Y. Wang, and H.J. Wang, Effect of rake rod number and arrangement on tailings thickening performance, J. Cent. South Univ., 45(2014), No. 1, p. 244.
    [23]
    J. Du, R.A. Pushkarova, and R.S.C. Smart, A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes, Int. J. Miner. Process. J., 93(2009), No. 1, p. 66. doi: 10.1016/j.minpro.2009.06.004
    [24]
    G. Huang, J.T. Liu, L.J. Wang, and Z.H. Song, Flow field simulation of agitating tank and fine coal conditioning, Int. J. Miner. Process., 148(2016), p. 116. doi: 10.1016/j.minpro.2016.01.020
    [25]
    Z.E. Ruan, C.P. Li, and C. Shi, Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener, J. Cent. South Univ., 23(2016), No. 3, p. 740. doi: 10.1007/s11771-016-3119-8
    [26]
    M. Rudman, K. Simic, D.A. Paterson, P. Strode, A. Brent, and I.D. Šutalo, Raking in gravity thickeners, Int. J. Miner. Process., 86(2008), No. 1-4, p. 114. doi: 10.1016/j.minpro.2007.12.002
    [27]
    Z.E. Ruan, Y. Wang, A.X. Wu, S.H. Yin, and F. Jin, A theoretical model for the rake blockage mitigation in deep cone thickener: A case study of lead−zinc mine in China, Math. Probl. Eng., 2019(2019), art. No. 2130617.
    [28]
    R. Kahane, T. Nguyen, and M.P. Schwarz, CFD modelling of thickeners at Worsley Alumina Pty Ltd, Appl. Math. Modell., 26(2002), No. 2, p. 281. doi: 10.1016/S0307-904X(01)00061-0
    [29]
    M. Rudman, D.A. Paterson, and K. Simic, Efficiency of raking in gravity thickeners, Int. J. Miner. Process., 95(2010), No. 1-4, p. 30. doi: 10.1016/j.minpro.2010.03.007
    [30]
    H. Li, H.J. Wang, A.X. Wu, H.Z. Jiao, and X.H. Liu, Pressure rake analysis of deep cone thickeners based on tailings’ settlement and rheological characteristics, J. Univ. Sci. Technol. Beijing, 35(2013), No. 12, p. 1553.
    [31]
    H.J. Wang, X. Zhou, A.X. Wu, Y.M. Wang, and L.H. Yang, Mathematical model and factors of paste thickener rake torque, Chin. J. Eng., 40(2018), No. 6, p. 673.
    [32]
    C.K. Tan, J. Bao, and G. Bickert, A study on model predictive control in paste thickeners with rake torque constraint, Miner. Eng., 105(2017), p. 52. doi: 10.1016/j.mineng.2017.01.011
    [33]
    H. J. Wang, Q. R. Chen, A. X. Wu, Y. G. Zhai, and X. P. Zhang, Study on the thickening properties of unclassified tailings and its application to thickener design, J. Univ. Sci. Technol. Beijing, 33(2011), No. 6, p. 676.
    [34]
    F.N. Shi and X.F. Zheng, The rheology of flotation froths, Int. J. Miner. Process., 69(2003), No. 1-4, p. 115. doi: 10.1016/S0301-7516(02)00120-5
    [35]
    A.M. Salam, B. Örmeci, and P.H. Simms, Determination of the optimum polymer dose for dewatering of oil sands tailings using UV-vis spectrophotometry, J. Pet. Sci. Eng., 147(2016), p. 68. doi: 10.1016/j.petrol.2016.05.004
    [36]
    Y. Wang, A.X. Wu, H.J. Wang, S.Z. Liu, and B. Zhou, Influence mechanism of flocculant dosage on tailings thickening, J. Univ. Sci. Technol. Beijing, 35(2013), No. 11, p. 1419.
    [37]
    Y. Wang, A.X. Wu, H.J. Wang, and B. Zhou, Dynamic thickening characteristics and mathematical model of total tailings, Rock Soil Mech., 35(2014), Suppl. 2, p. 168.
    [38]
    H.J. Wang, Y. Wang, A.X. Wu, B. Zhou, P. Yang, S.F. Yu, and N.B. Peng, Dynamic compaction and static compaction mechanism of fine unclassified tailings, J. Univ. Sci. Technol. Beijing, 35(2013), No. 5, p. 566.
    [39]
    S. Mizani and P. Simms, Method-dependent variation of yield stress in a thickened gold tailings explained using a structure based viscosity model, Miner. Eng., 98(2016), p. 40. doi: 10.1016/j.mineng.2016.07.011
    [40]
    S. Mizani, P. Simms, and W. Wilson, Rheology for deposition control of polymer-amended oil sands tailings, Rheol. Acta, 56(2017), No. 7-8, p. 623. doi: 10.1007/s00397-017-1015-2
    [41]
    L. Huynh, D.A. Beattie, D. Fornasiero, and J. Ralston, Effect of polyphosphate and naphthalene sulfonate formaldehyde condensate on the rheological properties of dewatered tailings and cemented paste backfill, Miner. Eng., 19(2006), No. 1, p. 28. doi: 10.1016/j.mineng.2005.05.001
    [42]
    S. Lim, K.H. Ahn, S.J. Lee, A. Kumar, N. Duan, X. Sun, S.P. Usher, and P.J. Scales, Yield and flow measurement of fine and coarse binary particulate mineral slurries, Int. J. Miner. Process., 119(2013), p. 6. doi: 10.1016/j.minpro.2012.12.009
    [43]
    A.X. Wu, Y. Wang, and H.J. Wang, Estimation model for yield stress of fresh uncemented thickened tailings: Coupled effects of true solid density, bulk density, and solid concentration, Int. J. Miner. Process., 143(2015), p. 117. doi: 10.1016/j.minpro.2015.09.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(3367) PDF Downloads(71) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return