Yong Wang, Ai-xiang Wu, Zhu-en Ruan, Zhi-hui Wang, Zong-su Wei, Gang-feng Yang, and Yi-ming Wang, Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1430-1437. https://doi.org/10.1007/s12613-020-2116-y
Cite this article as:
Yong Wang, Ai-xiang Wu, Zhu-en Ruan, Zhi-hui Wang, Zong-su Wei, Gang-feng Yang, and Yi-ming Wang, Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1430-1437. https://doi.org/10.1007/s12613-020-2116-y
Research Article

Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process

+ Author Affiliations
  • Corresponding authors:

    Ai-xiang Wu    E-mail: wuaixiang@126.com

    Zhu-en Ruan    E-mail: ziyuan0902rze@163.com

  • Received: 29 March 2020Revised: 14 May 2020Accepted: 8 June 2020Available online: 10 June 2020
  • To further clarify the dewatering performance and torque evolution during the tailings thickening process, a self-made rake was connected to a rheometer to monitor the shear stress and torque. The dewatering performance of the total tailings was greatly improved to a solid mass fraction of 75.33% in 240 min. The dewatering process could be divided into three stages: the rapid torque growth period, damping torque growth period, and constant torque thickening zone. The machine restart was found to have a significant effect on the rake torque; it could result in rake blockage. Furthermore, the simultaneous evolution of the torque and solid mass fraction of thickened tailings was analyzed. A relationship between the torque and the solid mass fraction was established, which followed a power function. Both the experimental and theoretical results provide a reference for the deep cone thickener design and operation to enhance the dewatering performance.
  • loading
  • [1]
    C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
    S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Clean. Prod., 247(2020), art. No. 119590. doi: 10.1016/j.jclepro.2019.119590
    D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste back fill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
    D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
    T. du Toit and M. Crozier, Khumani iron ore mine paste disposal and water recovery system, J. South. Afr. Inst. Min. Metall., 112(2012), No. 3, p. 211.
    H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Clean. Prod., 245(2020), art. No. 118882. doi: 10.1016/j.jclepro.2019.118882
    M. Unesi, M. Noaparast, S.Z. Shafaei, and E. Jorjani, Modeling the effects of ore properties on water recovery in the thickening process, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 851. doi: 10.1007/s12613-014-0981-y
    M. Edraki, T. Baumgartl, E. Manlapig, D. Bradshaw, D.M. Franks, and C.J. Moran, Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches, J. Clean. Prod., 84(2014), p. 411. doi: 10.1016/j.jclepro.2014.04.079
    A.X. Wu, Z.E. Ruan, R. Bürger, S.H.Y, J.D. Wang, and Y. Wang, Optimization of flocculation and settling parameters of tailings slurry by response surface methodology, Miner. Eng., 156(2020), art. No. 106488. doi: 10.1016/j.mineng.2020.106488
    H.Z. Jiao, S.F. Wang, A.X. Wu, H.M. Shen, and J.D. Wang, Cementitious property of NaAlO2-activated Ge slag as cement supplement, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1594. doi: 10.1007/s12613-019-1901-y
    A.X. Wu, Z.E. Ruan, C.P. Li, S.Y. Wang, Y.M. Wang, and J.D. Wang, Numerical study of flocculation settling and thickening of whole-tailings in deep cone thickener using CFD approach, J. Cent. South Univ., 26(2019), No. 3, p. 711. doi: 10.1007/s11771-019-4041-7
    R. Jewell and A.B. Fourie, Paste and Thickened Tailings: A Guide, Australian Centre for Geomechanics, Perth, 2012.
    F. Concha and R. Bürger, A century of research in sedimentation and thickening, KONA Powder Part. J., 20(2002), p. 38. doi: 10.14356/kona.2002009
    M. Tanguay, P. Fawell, and S. Adkins, Modelling the impact of two different flocculants on the performance of a thickener feedwell, Appl. Math. Modell., 38(2014), No. 17-18, p. 4262. doi: 10.1016/j.apm.2014.04.047
    A. Farkish and M. Fall, Rapid dewatering of oil sand mature fine tailings using super absorbent polymer (SAP), Miner. Eng., 50-51(2013), p. 38. doi: 10.1016/j.mineng.2013.06.002
    S. Wang, X.J. Wang, Q.S. Chen, X.P. Song, J.C. Qin, and Y.X. Ke, Influence of coarse tailings on flocculation settlement, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1065. doi: 10.1007/s12613-019-1948-9
    A.T. Owen, T.V. Nguyen, and P.D. Fawell, The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners, Int. J. Miner. Process., 93(2009), No. 2, p. 115. doi: 10.1016/j.minpro.2009.07.001
    T.V. Nguyen, J.B. Farrow, J. Smith, and P.D. Fawell, Design and development of a novel thickener feedwell using computational fluid dynamics, J. South. Afr. Inst. Min. Metall., 112(2012), No. 11, p. 939.
    R.B. White, I.D. Šutalo, and T. Nguyen, Fluid flow in thickener feedwell models, Miner. Eng., 16(2003), No. 2, p. 145. doi: 10.1016/S0892-6875(02)00252-2
    M. Ebrahimzadeh Gheshlaghi, A. Soltani Goharrizi, and A. Aghajani Shahrivar, Simulation of a semi-industrial pilot plant thickener using CFD approach, Int. J. Min. Sci. Technol., 23(2013), No. 1, p. 63. doi: 10.1016/j.ijmst.2013.01.010
    F. Concha, J. P. Segovia, S.Vergara, A. Pereira, E. Elorza, P. Leonelli, and F.Betancourt, Audit industrial thickeners with new on-line instrumentation, Powder. Technol., 314(2017), p. 680. doi: 10.1016/j.powtec.2017.03.040
    A.X. Wu, Y. Wang, and H.J. Wang, Effect of rake rod number and arrangement on tailings thickening performance, J. Cent. South Univ., 45(2014), No. 1, p. 244.
    J. Du, R.A. Pushkarova, and R.S.C. Smart, A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes, Int. J. Miner. Process. J., 93(2009), No. 1, p. 66. doi: 10.1016/j.minpro.2009.06.004
    G. Huang, J.T. Liu, L.J. Wang, and Z.H. Song, Flow field simulation of agitating tank and fine coal conditioning, Int. J. Miner. Process., 148(2016), p. 116. doi: 10.1016/j.minpro.2016.01.020
    Z.E. Ruan, C.P. Li, and C. Shi, Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener, J. Cent. South Univ., 23(2016), No. 3, p. 740. doi: 10.1007/s11771-016-3119-8
    M. Rudman, K. Simic, D.A. Paterson, P. Strode, A. Brent, and I.D. Šutalo, Raking in gravity thickeners, Int. J. Miner. Process., 86(2008), No. 1-4, p. 114. doi: 10.1016/j.minpro.2007.12.002
    Z.E. Ruan, Y. Wang, A.X. Wu, S.H. Yin, and F. Jin, A theoretical model for the rake blockage mitigation in deep cone thickener: A case study of lead−zinc mine in China, Math. Probl. Eng., 2019(2019), art. No. 2130617.
    R. Kahane, T. Nguyen, and M.P. Schwarz, CFD modelling of thickeners at Worsley Alumina Pty Ltd, Appl. Math. Modell., 26(2002), No. 2, p. 281. doi: 10.1016/S0307-904X(01)00061-0
    M. Rudman, D.A. Paterson, and K. Simic, Efficiency of raking in gravity thickeners, Int. J. Miner. Process., 95(2010), No. 1-4, p. 30. doi: 10.1016/j.minpro.2010.03.007
    H. Li, H.J. Wang, A.X. Wu, H.Z. Jiao, and X.H. Liu, Pressure rake analysis of deep cone thickeners based on tailings’ settlement and rheological characteristics, J. Univ. Sci. Technol. Beijing, 35(2013), No. 12, p. 1553.
    H.J. Wang, X. Zhou, A.X. Wu, Y.M. Wang, and L.H. Yang, Mathematical model and factors of paste thickener rake torque, Chin. J. Eng., 40(2018), No. 6, p. 673.
    C.K. Tan, J. Bao, and G. Bickert, A study on model predictive control in paste thickeners with rake torque constraint, Miner. Eng., 105(2017), p. 52. doi: 10.1016/j.mineng.2017.01.011
    H. J. Wang, Q. R. Chen, A. X. Wu, Y. G. Zhai, and X. P. Zhang, Study on the thickening properties of unclassified tailings and its application to thickener design, J. Univ. Sci. Technol. Beijing, 33(2011), No. 6, p. 676.
    F.N. Shi and X.F. Zheng, The rheology of flotation froths, Int. J. Miner. Process., 69(2003), No. 1-4, p. 115. doi: 10.1016/S0301-7516(02)00120-5
    A.M. Salam, B. Örmeci, and P.H. Simms, Determination of the optimum polymer dose for dewatering of oil sands tailings using UV-vis spectrophotometry, J. Pet. Sci. Eng., 147(2016), p. 68. doi: 10.1016/j.petrol.2016.05.004
    Y. Wang, A.X. Wu, H.J. Wang, S.Z. Liu, and B. Zhou, Influence mechanism of flocculant dosage on tailings thickening, J. Univ. Sci. Technol. Beijing, 35(2013), No. 11, p. 1419.
    Y. Wang, A.X. Wu, H.J. Wang, and B. Zhou, Dynamic thickening characteristics and mathematical model of total tailings, Rock Soil Mech., 35(2014), Suppl. 2, p. 168.
    H.J. Wang, Y. Wang, A.X. Wu, B. Zhou, P. Yang, S.F. Yu, and N.B. Peng, Dynamic compaction and static compaction mechanism of fine unclassified tailings, J. Univ. Sci. Technol. Beijing, 35(2013), No. 5, p. 566.
    S. Mizani and P. Simms, Method-dependent variation of yield stress in a thickened gold tailings explained using a structure based viscosity model, Miner. Eng., 98(2016), p. 40. doi: 10.1016/j.mineng.2016.07.011
    S. Mizani, P. Simms, and W. Wilson, Rheology for deposition control of polymer-amended oil sands tailings, Rheol. Acta, 56(2017), No. 7-8, p. 623. doi: 10.1007/s00397-017-1015-2
    L. Huynh, D.A. Beattie, D. Fornasiero, and J. Ralston, Effect of polyphosphate and naphthalene sulfonate formaldehyde condensate on the rheological properties of dewatered tailings and cemented paste backfill, Miner. Eng., 19(2006), No. 1, p. 28. doi: 10.1016/j.mineng.2005.05.001
    S. Lim, K.H. Ahn, S.J. Lee, A. Kumar, N. Duan, X. Sun, S.P. Usher, and P.J. Scales, Yield and flow measurement of fine and coarse binary particulate mineral slurries, Int. J. Miner. Process., 119(2013), p. 6. doi: 10.1016/j.minpro.2012.12.009
    A.X. Wu, Y. Wang, and H.J. Wang, Estimation model for yield stress of fresh uncemented thickened tailings: Coupled effects of true solid density, bulk density, and solid concentration, Int. J. Miner. Process., 143(2015), p. 117. doi: 10.1016/j.minpro.2015.09.010
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article views (1584) PDF downloads(37) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint