Meng-jun Hu, Ming-zhu Yin, Li-wen Hu, Peng-jie Liu, Shuo Wang,  and Jian-bang Ge, High-value utilization of CO2 to synthesize sulfur-doped carbon nanofibers with excellent capacitive performance, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1666-1677. https://doi.org/10.1007/s12613-020-2120-2
Cite this article as:
Meng-jun Hu, Ming-zhu Yin, Li-wen Hu, Peng-jie Liu, Shuo Wang,  and Jian-bang Ge, High-value utilization of CO2 to synthesize sulfur-doped carbon nanofibers with excellent capacitive performance, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1666-1677. https://doi.org/10.1007/s12613-020-2120-2
Research Article

High-value utilization of CO2 to synthesize sulfur-doped carbon nanofibers with excellent capacitive performance

+ Author Affiliations
  • Corresponding authors:

    Li-wen Hu    E-mail: lwh0423@cqu.edu.cn

    Jian-bang Ge    E-mail: Jianbangge@vt.edu

  • Received: 16 April 2020Revised: 16 June 2020Accepted: 18 June 2020Available online: 21 June 2020
  • Carbon nanofiber (CNF) is considered a promising material due to its excellent physical and chemical properties. This paper proposes a novel way to transform CO2 into heteroatom-doped CNFs, with the introduction of Fe, Co, and Ni as catalysts. When the electrolyte containing NiO, Co2O3, and Fe2O3 was employed, sulfur-doped CNFs in various diameters were obtained. With the introduction of Fe catalyst, the obtained sulfur-doped CNFs showed the smallest and tightest diameter distributions. The obtained sulfur-doped CNFs had high gravimetric capacitance (achieved by SDG-Fe) that could reach 348.5 F/g at 0.5 A/g, excellent cycling stability, and good rate performance. For comparison purposes, both Fe and nickel cathodes were tested, where the active metal atom at their surface could act as catalyst. In these two situations, sulfur-doped graphite sheet and sulfur-doped graphite quasi-sphere were the main products.

  • loading
  • [1]
    Z.Y. Wang, F. Dong, B. Shen, R.J. Zhang, Y.X. Zheng, L.Y. Chen, S.Y. Wang, C.Z. Wang, K.M. Ho, Y.J. Fan, B.Y. Jin, and W.S. Su, Electronic and optical properties of novel carbon allotropes, Carbon, 101(2016), p. 77. doi: 10.1016/j.carbon.2016.01.078
    [2]
    M. Richter, T. Heumüller, G.J. Matt, W. Heiss, and C.J. Brabec, Carbon photodetectors: the versatility of carbon allotropes, Adv. Energy Mater., 7(2017), No. 10, art. No. 1601574. doi: 10.1002/aenm.201601574
    [3]
    L. He, F. Weniger, H. Neumann, and M. Beller, Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry, Angew. Chem.,Int. Ed., 55(2016), No. 41, p. 12582. doi: 10.1002/anie.201603198
    [4]
    A.M. El-Sawy, I.M. Mosa, D. Su, C.J. Guild, S. Khalid, R. Joesten, J.F. Rusling, and S.L. Suib, Controlling the active sites of sulfur-doped carbon nanotube–graphene nanolobes for highly efficient oxygen evolution and reduction catalysis, Adv. Energy Mater., 6(2016), No. 5, art. No. 1501966. doi: 10.1002/aenm.201501966
    [5]
    L.H. Xu, G.Z. Fang, J.F. Liu, M.F. Pan, R.R. Wang, and S. Wang, One-pot synthesis of nanoscale carbon dots-embedded metal–organic frameworks at room temperature for enhanced chemical sensing, J. Mater. Chem. A, 4(2016), No. 41, p. 15880. doi: 10.1039/C6TA06403E
    [6]
    M. Meyyappan, Carbon nanotube-based chemical sensors, Small, 12(2016), No. 16, p. 2118. doi: 10.1002/smll.201502555
    [7]
    G. Sethia and A. Sayari, Activated carbon with optimum pore size distribution for hydrogen storage, Carbon, 99(2016), p. 289. doi: 10.1016/j.carbon.2015.12.032
    [8]
    M. Brzhezinskaya, E.A. Belenkov, V.A. Greshnyakov, G.E. Yalovega, and I.O. Bashkin, New aspects in the study of carbon-hydrogen interaction in hydrogenated carbon nanotubes for energy storage applications, J. Alloys Compd., 792(2019), p. 713. doi: 10.1016/j.jallcom.2019.04.107
    [9]
    D.B. Kong, Y. Gao, Z.C. Xiao, X.H. Xu, X.L. Li, and L.J. Zhi, Rational design of carbon-rich materials for energy storage and conversion, Adv. Mater., 31(2019), No. 45, art. No. 1804973. doi: 10.1002/adma.201804973
    [10]
    F. Xu, B.C. Ding, Y.Q. Qiu, J.P. Wu, Z.Z. Cheng, G.S. Jiang, H.J. Li, X.R. Liu, B.Q. Wei, and H.Q. Wang, Hollow carbon nanospheres with developed porous structure and retained n doping for facilitated electrochemical energy storage, Langmuir, 35(2019), No. 40, p. 12889. doi: 10.1021/acs.langmuir.8b03973
    [11]
    Y.F. Yuan and J. Lu, Demanding energy from carbon, Carbon Energy, 1(2019), No. 1, p. 8. doi: 10.1002/cey2.12
    [12]
    Z.J. Yao, X.H. Xia, Y. Zhong, Y.D. Wang, B.W. Zhang, D. Xie, X.L. Wang, J.P. Tu, and Y.Z. Huang, Hybrid vertical graphene/lithium titanate-CNTs arrays for lithium ion storage with extraordinary performance, J. Mater. Chem. A, 5(2017), No. 19, p. 8916. doi: 10.1039/C7TA02511D
    [13]
    Z.J. Yao, X.H. Xia, C.A. Zhou, Y. Zhong and J. J. A. S. Tu, Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries, Adv. Sci., 5(2018), No. 3, art. No. 1700786. doi: 10.1002/advs.201700786
    [14]
    H.M. Sun, J.Q. Wang, J.H. Zhao, B.X. Shen, J. Shi, J. Huang and C.F. Wu, Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion, Appl. Catal. B, 244(2019), p. 63. doi: 10.1016/j.apcatb.2018.11.040
    [15]
    S. Kar, A. Goeppert, and G.K.S. Prakash, Combined CO2 capture and hydrogenation to methanol: Amine immobilization enables easy recycling of active elements, ChemSusChem, 12(2019), No. 13, p. 3172. doi: 10.1002/cssc.201900324
    [16]
    D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renewable Sustainable Energy Rev., 39(2014), p. 426. doi: 10.1016/j.rser.2014.07.093
    [17]
    S. Ali, A. Razzaq, and S.I. In, Development of graphene based photocatalysts for CO2 reduction to C1 chemicals: A brief overview, Catal. Today, 335(2019), p. 39. doi: 10.1016/j.cattod.2018.12.003
    [18]
    Y.F. Chen, M.Y. Wang, S.L. Lu, J.G. Tu, and S.Q. Jiao, Electrochemical graphitization conversion of CO2 through soluble NaVO3 homogeneous catalyst in carbonate molten salt, Electrochim. Acta, 331(2020), art. No. 135461. doi: 10.1016/j.electacta.2019.135461
    [19]
    L.W. Hu, Z.K. Yang, W.L. Yang, M.L. Hu, and S.Q. Jiao, The synthesis of sulfur-doped graphite nanostructures by direct electrochemical conversion of CO2 in CaCl2−NaCl−CaO−Li2SO4, Carbon, 144(2019), p. 805. doi: 10.1016/j.carbon.2018.12.049
    [20]
    B.W. Deng, X.H. Mao, W. Xiao, and D.H. Wang, Microbubble effect-assisted electrolytic synthesis of hollow carbon spheres from CO2, J. Mater. Chem. A, 5(2017), No. 25, p. 12822. doi: 10.1039/C7TA03606J
    [21]
    X. Chen, H.J. Zhao, H.W. Xie, J.K. Qu, X.Y. Ding, Y.F. Geng, D.H. Wang, and H.Y. Yin, Tuning the preferentially electrochemical growth of carbon at the “gaseous CO2-liquid molten salt-solid electrode” three-phase interline, Electrochim. Acta, 324(2019), art. No. 134852. doi: 10.1016/j.electacta.2019.134852
    [22]
    J.B. Ge, L.W. Hu, Y. Song, and S.Q. Jiao, An investigation into the carbon nucleation and growth on a nickel substrate in LiCl–Li2CO3 melts, Faraday Discuss., 190(2016), p. 259. doi: 10.1039/C5FD00217F
    [23]
    L.W. Hu, Y. Song, J.B. Ge, J. Zhu, Z.C. Han, and S.Q. Jiao, Electrochemical deposition of carbon nanotubes from CO2 in CaCl2–NaCl-based melts, J. Mater. Chem. A, 5(2017), No. 13, p. 6219. doi: 10.1039/C7TA00258K
    [24]
    A. Douglas, R. Carter, M.Y. Li, and C.L. Pint, Toward small-diameter carbon nanotubes synthesized from captured carbon dioxide: critical role of catalyst coarsening, ACS Appl. Mater. Interfaces, 10(2018), No. 22, p. 19010. doi: 10.1021/acsami.8b02834
    [25]
    L.W. Hu, Y. Song, J.B. Ge, J. Zhu, and S.Q. Jiao, Capture and electrochemical conversion of CO2 to ultrathin graphite sheets in CaCl2-based melts, J. Mater. Chem. A, 3(2015), No. 42, p. 21211. doi: 10.1039/C5TA05127D
    [26]
    L.W. Hu, Y. Song, S.Q. Jiao, Y.J. Liu, J.B. Ge, H.D. Jiao, J. Zhu, J.X. Wang, H.M. Zhu, and D.J. Fray, Direct conversion of greenhouse gas CO2 into graphene via molten salts electrolysis, ChemSusChem, 9(2016), No. 6, p. 588. doi: 10.1002/cssc.201501591
    [27]
    Z.C. Han, J.B. Ge, J. Zhu, M.Y. Wang, and S. Jiao, A convenient electrochemical method for preparing carbon nanotubes filled with amorphous boron, J. Electrochem. Soc., 165(2018), No. 16, p. E879. doi: 10.1149/2.1041816jes
    [28]
    B.W. Deng, M.X. Gao, R. Yu, X.H. Mao, R. Jiang, and D.H. Wang, Critical operating conditions for enhanced energy-efficient molten salt CO2 capture and electrolytic utilization as durable looping applications, Appl. Energy, 255(2019), art. No. 113862. doi: 10.1016/j.apenergy.2019.113862
    [29]
    H.Y. Yin, X.H. Mao, D.Y. Tang, W. Xiao, L.R. Xing, H. Zhu, D.H. Wang, and D. R. Sadoway, Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis, Energy Environ. Sci., 6(2013), No. 5, p. 1538. doi: 10.1039/c3ee24132g
    [30]
    J.J. Peng, N.Q. Chen, R. He, Z.Y. Wang, S. Dai, and X.B. Jin, Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: a facile and mild graphitization method, Angew. Chem. Int. Ed., 56(2017), p. 1751. doi: 10.1002/anie.201609565
    [31]
    J. Tu, J.X. Wang, S.J. Li, W.L. Song, M.Y. Wang, H.M. Zhu, and S. Jiao, High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes, Nanoscale, 11(2019), No. 26, p. 12537. doi: 10.1039/C9NR03112J
    [32]
    L.W. Hu, W.L. Yang, Z.K. Yang, and J. Xu, Fabrication of graphite via electrochemical conversion of CO2 in a CaCl2 based molten salt at a relatively low temperature, RSC Adv., 9(2019), No. 15, p. 8585. doi: 10.1039/C8RA10560J
    [33]
    A. Tanaka, S.H. Yoon, and I. Mochida, Formation of fine Fe–Ni particles for the non-supported catalytic synthesis of uniform carbon nanofibers, Carbon, 42(2004), No. 7, p. 1291. doi: 10.1016/j.carbon.2004.01.029
    [34]
    L.W. Hu, Y. Song, J.B. Ge, S.Q. Jiao, and J. Cheng, Electrochemical metallurgy in CaCl2–CaO melts on the basis of TiO2·RuO2 inert anode, J. Electrochem. Soc., 163(2016), No. 3, p. E33. doi: 10.1149/2.0131603jes
    [35]
    Z. Zhou, W.G. Bouwman, H. Schut, T.O. van Staveren, M.C.R. Heijna, and C. Pappas, Influence of neutron irradiation on the microstructure of nuclear graphite: An X-ray diffraction study, J. Nucl. Mater., 487(2017), p. 323. doi: 10.1016/j.jnucmat.2017.02.004
    [36]
    L.S. Huang, J.Z. Lu, D.W. Ma, C.M. Ma, B. Zhang, H.Y. Wang, G.Y. Wang, D.H. Gregory, X.Y. Zhou, and G. Han, Facile in situ solution synthesis of SnSe/rGO nanocomposites with enhanced thermoelectric performance, J. Mater. Chem. A, 8(2020), No. 3, p. 1394. doi: 10.1039/C9TA11737G
    [37]
    Z. Yang, Z. Yao, G.F. Li, G.Y. Fang, H.G. Nie, Z. Liu, X.M. Zhou, X.A. Chen, and S.M. Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction, ACS Nano, 6(2012), No. 1, p. 205. doi: 10.1021/nn203393d
    [38]
    S.M. Liu, Y.J. Cai, X. Zhao, Y.R. Liang, M.T. Zheng, H. Hu, H.W. Dong, S.P. Jiang, Y.L. Liu, and Y. Xiao, Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor, J. Power Sources, 360(2017), p. 373. doi: 10.1016/j.jpowsour.2017.06.029
    [39]
    Y. Xu, C.L. Zhang, M. Zhou, Q. Fu, C.X. Zhao, M.H. Wu, and Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries, Nat. Commun., 9(2018), No. 1, p. 1720. doi: 10.1038/s41467-018-04190-z
    [40]
    L. Wan, W. Wei, M.J. Xie, Y. Zhang, X. Li, R. Xiao, J. Chen, and C. Du, Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode, Electrochim. Acta, 311(2019), p. 72. doi: 10.1016/j.electacta.2019.04.106
    [41]
    J.H. Li, G.P. Zhang, C.P. Fu, L.B. Deng, R. Sun, and C.P. Wong, Facile preparation of nitrogen/sulfur co-doped and hierarchical porous graphene hydrogel for high-performance electrochemical capacitor, J. Power Sources, 345(2017), p. 146. doi: 10.1016/j.jpowsour.2017.02.011
    [42]
    M.X. Gao, B.W. Deng, Z.G. Chen, M. Tao, and D.H. Wang, Cathodic reaction kinetics for CO2 capture and utilization in molten carbonates at mild temperatures, Electrochem. Commun., 88(2018), p. 79. doi: 10.1016/j.elecom.2018.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2524) PDF Downloads(42) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return