Jin-hua Zhou, Yong-feng Shen, and Nan Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 335-348. https://doi.org/10.1007/s12613-020-2121-1
Cite this article as:
Jin-hua Zhou, Yong-feng Shen, and Nan Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 335-348. https://doi.org/10.1007/s12613-020-2121-1
Invited review

Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review

+ Author Affiliations
  • Corresponding authors:

    Yong-feng Shen    E-mail: shenyf@smm.neu.edu.cn

    Nan Jia    E-mail: jian@atm.neu.edu.cn

  • Received: 20 April 2020Revised: 11 June 2020Accepted: 17 June 2020Available online: 21 June 2020
  • This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic (RAFM) steels. High-angle grain boundaries, subgrain boundaries, nano-sized M23C6, and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength. M23C6 carbides are easily coarsened under high temperatures, thereby weakening their ability to block dislocations. Creep properties are improved through the reduction of M23C6 carbides. Thus, the loss of strength must be compensated by other strengthening mechanisms. This review also outlines the recent progress in the development of RAFM steels. Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength. Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel. The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries. This procedure increases the creep life of TMT(thermo-mechanical treatment) 9Cr–1W–0.06Ta steel by ~20 times compared with those of F82H and Eurofer 97 steels under 550°C/260 MPa.

  • loading
  • [1]
    Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A.Kimura, J. Konys, R.J. Kurtz, R. Lindau, T. Muroga, G.R. Odette, B. Raj, R.E. Stoller, L. Tan, H. Tanigawa, A.A.F. Tavassoli, T. Yamamoto, F. Wan, and Y. Wu, Recent progress of R&D activities on reduced activation ferritic/martensitic steels, J. Nucl. Mater., 422(2013), No. 1-3, p. S2. doi: 10.1016/j.jnucmat.2012.12.039
    K.C. Sahoo, J. Vanaja, P. Parameswaran, V.D. Vijayanand, and K. Laha, Effect of thermal ageing on microstructure, tensile and impact properties of reduced activated ferritic-martensitic steel, Mater. Sci. Eng. A, 686(2017), p. 54. doi: 10.1016/j.msea.2017.01.030
    C.L. Mao, C.X, Liu, L.M. Yu, H.J. Li, and Y.C. Liu, Mechanical properties and tensile deformation behavior of a reduced activated ferritic−martensitic (RAFM) steel at elevated temperatures, Mater. Sci. Eng. A, 725(2018), p. 283. doi: 10.1016/j.msea.2018.03.119
    T. Noda, F. Abe, H. Araki, and M. Okada, Materials selection for reduced activation of fusion reactors, J. Nucl. Mater., 155-157(1988), p. 581. doi: 10.1016/0022-3115(88)90375-3
    E.E. Bloom, R.W. Conn, J.W. Davis, R.E. Gold, R. Little, K.R. Schultz, D.L. Smith, and F.W. Wiffen, Low activation materials for fusion applications, J. Nucl. Mater., 122(1984), No. 1-3, p. 17. doi: 10.1016/0022-3115(84)90570-1
    R.L. Klueh, E.T. Cheng, M.L. Grossbeck, and E.E. Bloom, Impurity effects on reduced-activation ferritic steels developed for fusion applications, J. Nucl. Mater., 280(2000), No. 3, p. 353. doi: 10.1016/S0022-3115(00)00060-X
    H. Tanigawa, Y. Someya, H. Sakasegawa, T. Hirose, and K. Ochiai, Radiological assessment of the limits and potential of reduced activation ferritic/martensitic steels, Fusion Eng. Des., 89(2014), No. 7-8, p. 1573. doi: 10.1016/j.fusengdes.2014.02.052
    R.L. Klueh and P.J. Maziasz, The microstructure of chromium−tungsten steels, Metall. Trans. A, 20(1989), No. 3, p. 373. doi: 10.1007/BF02653916
    R.L. Klueh, Heat treatment behavior and tensile properties of Cr−W steels, Metall. Trans. A, 20(1989), No. 3, p. 463. doi: 10.1007/BF02653926
    R.L. Klueh and W.R. Corwin, Impact behavior of Cr−W steels, J. Mater. Eng., 11(1989), No. 2, p. 169. doi: 10.1007/BF02834465
    S. Noh, M. Ando, H. Tanigawa, H. Fujii, and A. Kimura, Friction stir welding of F82H steel for fusion applications, J. Nucl. Mater., 478(2016), p. 1. doi: 10.1016/j.jnucmat.2016.05.028
    M. Kondo, M. Ishii, Y. Hishinuma, T. Tanaka, T. Nozawa, and T. Muroga, Metallurgical study on corrosion of RAFM steel JLF-1 in Pb−Li alloys with various Li concentrations, Fusion Eng. Des., 125(2017), p. 316. doi: 10.1016/j.fusengdes.2017.04.058
    K. Mukaia, F. Sanchezb, Chemical compatibility study between ceramic breeder and EUROFER97 steel for HCPB-DEMO blanket, J. Nucl. Mater., 488(2017), p. 196. doi: 10.1016/j.jnucmat.2017.03.018
    W.S. Tang, X.Q. Yang, S.L. Li, and H.J. Li, Microstructure and properties of CLAM/316L steel friction stir welded joints, J. Mater. Process. Technol., 271(2019), p. 189. doi: 10.1016/j.jmatprotec.2019.03.032
    N.S. Shah, S. Sunil, and A. Sarkar, High temperature uniaxial compression and stress–relaxation behavior of India-specific RAFM steel, Metall. Mater. Trans. A, 49(2018), p. 2644. doi: 10.1007/s11661-018-4641-0
    Y.B. Chun, S.H. Kang, S. Noh, T.K. Kim, D.W. Lee, S. Cho, and Y.H. Jeong, Effects of alloying elements and heat treatments on mechanical properties of Korean reduced-activation ferritic−martensitic steel, J. Nucl. Mater., 455(2014), No. 1-3, p. 212. doi: 10.1016/j.jnucmat.2014.05.063
    L. Tan, Y. Katoh, A.A.F. Tavassoli, J. Henry, M. Rieth, H. Sakasegawa, H. Tanigawa, and Q. Huang, Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service, J. Nucl. Mater., 479(2016), p. 515. doi: 10.1016/j.jnucmat.2016.07.054
    Y. Zhao, S. Liu, J. Shi, and X. Mao, Experimental and numerical simulation analysis on creep crack growth behavior of CLAM steel, Mater. Sci. Eng. A, 735(2018), p. 260. doi: 10.1016/j.msea.2018.08.048
    X. Hu, L.X. Huang, W. Yan, W. Wang, W. Sha, Y.Y. Shan, and K. Yang, Microstructure evolution in CLAM steel under low cycle fatigue, Mater. Sci. Eng. A, 607(2014), p. 356. doi: 10.1016/j.msea.2014.04.005
    P. Verma, N.C.S. Srinivas, S.R. Singh, and V. Singh, Low cycle fatigue behavior of modified 9Cr–1Mo steel at room temperature, Mater. Sci. Eng. A, 652(2016), p. 30. doi: 10.1016/j.msea.2015.11.060
    C. Zhang, L. Cui, Y.C. Liu, C.X. Liu, and H.J. Li, Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel, J. Mater. Sci. Technol., 34(2018), No. 5, p. 756. doi: 10.1016/j.jmst.2017.11.049
    C. Zhang, L. Cui, D.P. Wang, Y.C. Liu, and H.J. Li, Effect of microstructures to tensile and impact properties of stir zone on 9%Cr reduced activation ferritic/martensitic steel friction stir welds, Mater. Sci. Eng. A, 729(2018), p. 257. doi: 10.1016/j.msea.2018.05.043
    S. Kumar, R. Awasthi, C.S. Viswanadham, K. Bhanumurthy, and G.K. Dey, Thermo-metallurgical and thermo-mechanical computations for laser welded joint in 9Cr–1Mo(V, Nb) ferritic/martensitic steel, Mater. Des., 59(2014), p. 211. doi: 10.1016/j.matdes.2014.02.046
    B. Arivazhagan, G. Srinivasan, S.K. Albert, and A.K. Bhaduri, A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process, Fusion Eng. Des., 86(2011), No. 2-3, p. 192. doi: 10.1016/j.fusengdes.2010.12.035
    F.F. Luo, Z. Yao, L.P. Guo, J.P. Suo, and Y.M. Wen, Convoluted dislocation loops induced by helium irradiation in reduced-activation martensitic steel and their impact on mechanical properties, Mater. Sci. Eng. A, 607(2014), p. 390. doi: 10.1016/j.msea.2014.04.008
    C.C. Wang, C. Zhang, J.J. Zhao, Z.G. Yang, and W.B. Liu, Microstructure evolution and yield strength of CLAM steel in low irradiation condition, Mater. Sci. Eng. A, 682(2017), p. 563. doi: 10.1016/j.msea.2016.11.057
    W.H. Hu, L.P. Guo, J.H. Chen, F.F. Luo, T.C. Li, Y.Y. Ren, J.P. Suo, and F. Yang, Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures, Fusion Eng. Des., 89(2014), No. 4, p. 324. doi: 10.1016/j.fusengdes.2014.02.033
    D. Brimbal, L. Beck, O. Troeber, E. Gaganidze, P. Trocellier, J. Aktaa, and R. Lindau, Microstructural characterization of Eurofer-97 and Eurofer-ODS steels before and after multi-beam ion irradiations at JANNUS Saclay facility, J. Nucl. Mater., 465(2015), p. 236. doi: 10.1016/j.jnucmat.2015.05.045
    M. Dadé, J. Malaplate, J. Garnier, F.D. Geuser, F. Barcelo, P. Wident, and A. Deschamps, Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe−14Cr steels, Acta Mater., 127(2017), p. 165. doi: 10.1016/j.actamat.2017.01.026
    S. Pal, M.E. Alam, S.A. Maloy, D.T. Hoelzer, and G.R. Odette, Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy, Acta Mater., 152(2018), p. 338. doi: 10.1016/j.actamat.2018.03.045
    Y. Zhang, C. Yu, T. Zhou, D.W. Liu, X.W. Fang, H.P. Li, and J.P. Suo, Effects of Ti and a twice-quenching treatment on the microstructure and ductile brittle transition temperature of 9CrWVTiN steels, Mater. Des., 88(2015), p. 675. doi: 10.1016/j.matdes.2015.09.056
    D. Wu, F.M. Wang, J. Cheng, and C.R. Li, Effect of Nb and V on the continuous cooling transformation of undercooled austenite in Cr–Mo–V steel for brake discs, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 892. doi: 10.1007/s12613-018-1638-z
    Y. Li, P.F. Du, Z.H. Jiang, C.L. Yao, L. Bai, Q. Wang, G. Xu, C.Y. Chen, L. Zhang, and H.B. Li, Effects of TiC on the microstructure and formation of acicular ferrite in ferritic stainless steel, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1385. doi: 10.1007/s12613-019-1845-2
    J.G. Chen, C.X. Liu, Y.C. Liu, B.Y. Yan, and H.J. Li, Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel, J. Nucl. Mater., 479(2016), p. 295. doi: 10.1016/j.jnucmat.2016.07.029
    X.W. Zhai, S.J. Liu, and Y.Y. Zhao, Effect of tantalum content on microstructure and tensile properties of CLAM steel, Fusion Eng. Des., 104(2016), p. 21. doi: 10.1016/j.fusengdes.2016.01.016
    J.H. Zhou, Y.F. Shen, Y.Y. Hong, W.Y. Xue, and R.D.K. Misra, Strengthening a fine-grained low activation martensitic steel by nanosized carbides, Mater. Sci. Eng. A, 769(2020), p. 138471. doi: 10.1016/j.msea.2019.138471
    S.K. Albert, K. Lahaa, A.K. Bhaduria, T. Jayakumara, and E. Rajendrakumarb, Development of IN-RAFM steel and fabrication technologies for Indian TBM, Fusion Eng. Des., 109-111(2016), p. 1422. doi: 10.1016/j.fusengdes.2015.12.005
    J.B. Wang, Y.Y. Lian, F. Feng, Z. Chen, Y. Tan, S. Yang, X. Liu, J.B. Qiang, T.Z. Liu, M.Y. Wei, and Y.M. Wang, Microstructure of the tungsten and reduced activation ferritic−martensitic steel joint brazed with an Fe-based amorphous alloy, Fusion Eng. Des., 138(2019), p. 164. doi: 10.1016/j.fusengdes.2018.11.017
    C. Pandey, A. Giri, and M.M. Mahapatra, Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties, Mater. Sci. Eng. A, 664(2016), p. 58. doi: 10.1016/j.msea.2016.03.132
    S.H. Chen and L.J. Rong, Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel, J. Nucl. Mater., 459(2015), p. 13. doi: 10.1016/j.jnucmat.2015.01.004
    R. Agamennone, W. Blum, C. Gupta, and J.K. Chakravartty, Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels, Acta Mater., 54(2006), No. 11, p. 3003. doi: 10.1016/j.actamat.2006.02.038
    B.Y. Yan, Y.C. Liu, Z.J. Wang, C.X. Liu, Y.H. Si, H.J. Li, and J.X. Yu, The effect of precipitate evolution on austenite grain growth in RAFM steel, Materials, 10(2017), No. 9, p. 1017. doi: 10.3390/ma10091017
    H.K. Kim, J.W. Lee, J. Moon, C.H. Lee, and H.U. Hong, Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel for nuclear fusion reactors, J. Nucl. Mater., 500(2018), p. 327. doi: 10.1016/j.jnucmat.2018.01.008
    H.G. Tehrani-Moghadam, H.R. Jafarian, M.T. Salehi, and A.R. Eivani, Evolution of microstructure and mechanical properties of Fe–24Ni–0.3C TRIP steel during friction stir processing, Mater. Sci. Eng. A, 718(2018), p. 335. doi: 10.1016/j.msea.2018.01.126
    V. Sklenicka, J. Dvorak, P. Kral, Z. Stonawska, and M. Svoboda, Creep processes in pure aluminium processed by equal-channel angular pressing, Mater. Sci. Eng. A, 410-411(2005), p. 408. doi: 10.1016/j.msea.2005.08.099
    M.E. Kassner, The Effect of Low-Angle, and High-Angle Grain Boundaries on Elevated Temperature Strength, MRS Proceedings, 362(1994). doi: 10.1557/PROC-362-157
    Y. Jiao, L.J. Huang, S.L. Wei, H.X. Peng, Q. An, S. Jiang, and L. Geng, Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance, J. Mater. Sci. Technol., 35(2019), No. 8, p. 1532. doi: 10.1016/j.jmst.2019.04.001
    T. Takahashi, H. Nagai, and H. Oikawa, Effects of grain size on creep behaviour of Ti-50 mol.%Al intermetallic compound at 1100 K, Mater. Sci. Eng. A, 128(1990), No. 2, p. 195. doi: 10.1016/0921-5093(90)90227-T
    S.G. Tian, B.S. Zhang, H.C. Yu, N. Tian, and Q.Y. Li, Microstructure evolution and creep behaviors of a directionally solidified nickel-base alloy under long-life service condition, Mater. Sci. Eng. A, 673(2016), p. 391. doi: 10.1016/j.msea.2016.07.041
    Y.B. Hu, L. Zhang. T.S. Cao, C.Q. Cheng, P.T. Zhao, G.P. Guo, and J. Zhao, The effect of thickness on the creep properties of a single-crystal nickel-based superalloy, Mater. Sci. Eng. A, 728(2018), p. 124. doi: 10.1016/j.msea.2018.04.114
    S.Y. Han, S.Y. Shin, C.H. Seo, H. Lee, J.H. Bae, K. Kim, S. Lee, and N.J. Kim, Effects of Mo, Cr, and V additions on tensile and charpy impact properties of API X80 pipeline steels, Metall. Mater. Trans. A, 40(2009), art. No. 1851. doi: 10.1007/s11661-009-9884-3
    A.S. Taylor and P.D. Hodgson, Dynamic behavior of 304 stainless steel during high Z deformation, Mater. Sci. Eng. A, 528(2011), No. 9, p. 3310. doi: 10.1016/j.msea.2010.12.093
    G. Azevedo, R. Barbosa, E.V. Pereloma, and D.B. Santos, Development of an ultrafine grained ferrite in a low C–Mn and Nb–Ti microalloyed steels after warm torsion and intercritical annealing, Mater. Sci. Eng. A, 402(2005), No. 1-2, p. 98. doi: 10.1016/j.msea.2005.04.026
    A. Momeni and K. Dehghani, Hot working behavior of 2205 austenite–ferrite duplex stainless steel characterized by constitutive equations and processing maps, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1448. doi: 10.1016/j.msea.2010.11.020
    M.E. Kassner, Recent developments in understanding the mechanism of five-power-law creep, Mater. Sci. Eng. A, 410-411(2005), p. 20. doi: 10.1016/j.msea.2005.08.053
    Y. Tsukada, A. Shiraki, Y. Murata, S. Takaya, T. Koyama, and M. Morinaga, Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel, J. Nucl. Mater., 401(2010), No. 1-3, p. 13. doi: 10.1016/j.jnucmat.2010.03.013
    B.A. Szajewski, S.S. Chakravarthy, and W.A. Curtin, Operation of a 3D Frank–Read source in a stress gradient and implications for size-dependent plasticity, Acta Mater., 61(2013), No. 5, p. 1469. doi: 10.1016/j.actamat.2012.11.023
    G.A. Malygin, Mechanism of the formation of deformation steps of nanometric sizes at the surface of plastically deformed crystals, Phys. Solid State, 43(2001), p. 257. doi: 10.1134/1.1349471
    S.G. Tian, J.H. Yang, and X.F. Yu, Deformation features of AZ31 Mg-alloy in initial period of high temperature creep, Acta Metall. Sin., 41(2005), No. 4, p. 375.
    Y. Li, Y.F. Li, B. Xu, Q.L. Li, G.G. Shu, and W. Liu, Magnetic properties of thermally aged Fe–Cu alloys with pre-deformation, J. Iron. Steel Res. Int., 23(2016), No. 9, p. 981. doi: 10.1016/S1006-706X(16)30147-9
    A. Kostka, K.G. Tak, and G. Eggeler, On the effect of equal-channel angular pressing on creep of tempered martensite ferritic steels, Mater. Sci. Eng. A, 481-482(2008), p. 723. doi: 10.1016/j.msea.2007.02.154
    W. Liu, Y.H. Jiang, H. Guo, Y. Zhang, A.M. Zhao, and Y. Huang, Mechanical properties and wear resistance of ultrafine bainitic steel under low austempering temperature, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 483. doi: 10.1007/s12613-019-1916-4
    K. Lu, Making strong nanomaterials ductile with gradients, Science, 345(2014), No. 6230, p. 1455.
    M. Taneike, F. Abe, and K. Sawada, Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions, Nature, 424(2003), p. 294. doi: 10.1038/nature01740
    L. Tan, L.L. Snead, and Y. Katoh, Development of new generation reduced activation ferritic–martensitic steels for advanced fusion reactors, J. Nucl. Mater., 478(2016), p. 42. doi: 10.1016/j.jnucmat.2016.05.037
    T.P. Hou and K.M. Wu, Alloy carbide precipitation in tempered 2.25 Cr–Mo steel under high magnetic field, Acta Mater., 61(2013), No. 6, p. 2016. doi: 10.1016/j.actamat.2012.12.021
    J.R. Croteau, S. Griffiths, M.D. Rossell, C. Leinenbach, C. Kenel, V. Jansena, D.N. Seidmana, D.C. Dunanda, and N.Q. Voa, Microstructure and mechanical properties of Al–Mg–Zr alloys processed by selective laser melting, Acta Mater., 153(2018), p. 35. doi: 10.1016/j.actamat.2018.04.053
    L. Sun, T.H. Simm, T.L. Martin, S. Mcadam, D.R. Galvin, K.M. Perkins, P.A.J. Bagot, M.P. Moody, S.W. Ooi, P. Hill, M.J. Rawson, and H.K.D.H. Bhadeshia, A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates, Acta Mater., 149(2018), p. 285. doi: 10.1016/j.actamat.2018.02.044
    H. Tanaka, M. Murata, F. Abe, and K. Yagi, The effect of carbide distributions on long-term creep rupture strength of SUS321H and SUS347H stainless steels, Mater. Sci. Eng. A, 234-236(1997), p. 1049. doi: 10.1016/S0921-5093(97)00360-2
    A. Baltušnikas, I. Lukošiūtė, V. Makarevičius, R. Kriūkienė, and A. Grybėnas, Influence of thermal exposure on structural changes of M23C6 carbide in P91 steel, J. Mater. Eng. Perform., 25(2016), p. 1945. doi: 10.1007/s11665-016-2002-y
    W.Y. Xue, J.H. Zhou, Y.F. Shen, W.N. Zhang, and Z.Y. Liu, Micromechanical behavior of a fine-grained CLAM steel, J. Mater. Sci. Technol., 35(2019), No. 9, p. 1869. doi: 10.1016/j.jmst.2019.05.005
    K.S. Cho, S.S. Park, D.H. Choi, and H. Kwon, Influence of Ti addition on the microstructure and mechanical properties of a 5% Cr–Mo–V steel, J. Alloys Compd., 626(2015), p. 314. doi: 10.1016/j.jallcom.2014.12.040
    M. Tamura, K. Shinozuka, K. Masamura, K. Ishizawa, and S. Sugimoto, Solubility product and precipitation of TaC in Fe–8Cr–2W steel, J. Nucl. Mater., 258-263(1998), p. 1158. doi: 10.1016/S0022-3115(98)00151-2
    G.E. Lucas, The evolution of mechanical property change in irradiated austenitic stainless steels, J. Nucl. Mater., 206(1993), No. 2-3, p. 287. doi: 10.1016/0022-3115(93)90129-M
    C.S. Wang, Y.A. Guo, J.T. Guo, and L.Z. Zhou, Microstructural characteristics and mechanical properties of a Mo modified Ni–Fe–Cr based alloy, Mater. Sci. Eng. A, 675(2016), p. 314. doi: 10.1016/j.msea.2016.08.081
    X. Yang, B. Liao, F.R. Xiao, W. Yan, Y.Y. Shan, and K. Yang, Ripening behavior of M23C6 carbides in P92 steel during aging at 800°C, J. Iron Steel Res. Int., 24(2016), No. 8, p. 858.
    Z.F. Peng, S. Liu, C. Yang, F.Y. Chen, and F.F. Peng, The effect of phase parameter variation on hardness of P91 components after service exposures at 530–550°C, Acta Mater., 143(2018), p. 141. doi: 10.1016/j.actamat.2017.10.010
    Y.P. Zeng, J.D. Jia, W.H. Cai, S.Q. Dong, and Z.C. Wang, Effect of long-term service on the precipitates in P92 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 913. doi: 10.1007/s12613-018-1640-5
    C.C. Zhao, Y.F. Zhou, X.L. Xing, S. Liu, X.J. Ren, and Q.X. Yang, Precipitation stability and micro-property of (Nb, Ti)C carbides in MMC coating, J. Alloys Compd., 763(2018), p. 670. doi: 10.1016/j.jallcom.2018.05.318
    W. Yan, W. Wang, Y.Y. Shan, and K. Yang, Microstructural stability of 9–12%Cr ferrite/martensite heat-resistant steels, Front. Mater. Sci., 7(2013), No. 1, p. 1. doi: 10.1007/s11706-013-0189-5
    K. Sawada, K. Kubo, and F. Abe, Contribution of coarsening of MX carbonitrides to creep strength degradation in high chromium ferritic steel, Mater. Sci. Technol., 19(2003), No. 6, p. 732. doi: 10.1179/026708303225010687
    X.S. Zhou, C.X. Liu, L.M. Yu, Y.C. Liu, and H.J. Li, Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review, J. Mater. Sci. Technol., 31(2015), No. 3, p. 235. doi: 10.1016/j.jmst.2014.12.001
    C. Liu, Q.Q. Shi, W. Yan, C.G. Shen, K. Yang, Y.Y. Shan, and M.C. Zhao, Designing a high Si reduced activation ferritic/martensitic steel for nuclear power generation by using Calphad method, J. Mater. Sci. Technol., 35(2019), No. 3, p. 266. doi: 10.1016/j.jmst.2018.07.002
    C.M. Barr, P.J. Felfer, J.I. Cole, and M.L. Taheri, Observation of oscillatory radiation induced segregation profiles at grain boundaries in neutron irradiated 316 stainless steel using atom probe tomography, J. Nucl. Mater., 504(2018), p. 181. doi: 10.1016/j.jnucmat.2018.01.053
    S. Ishino, N. Sekimura, K. Murakami, and H. Abe, Some remarks on in-situ studies using TEM-heavy-ion accelerator link from the stand point of extracting radiation damage caused by fast neutrons, J. Nucl. Mater., 471(2016), p. 167. doi: 10.1016/j.jnucmat.2015.11.036
    F.D. Chen, X.B. Tang, Y.H. Yang, H. Huang, J. Liu, H. Li, and D. Chen, Atomic simulations of Fe/Ni multilayer nanocomposites on the radiation damage resistance, J. Nucl. Mater., 468(2016), p. 164. doi: 10.1016/j.jnucmat.2015.11.028
    P.P. Liu, M.Z. Zhao, Y.M. Zhu, J.W. Bai, F.R. Wan, and Q. Zhan, Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel, J. Alloys Compd., 579(2013), p. 599. doi: 10.1016/j.jallcom.2013.07.085
    X. Wang, Q.Z. Yan, G.S. Was, and L.M. Wang, Void swelling in ferritic-martensitic steels under high dose ion irradiation: Exploring possible contributions to swelling resistance, Scripta Mater., 112(2016), p. 9. doi: 10.1016/j.scriptamat.2015.08.032
    G.A. Vetterick, J. Gruber, P.K. Suri, J.K. Baldwin, M.A. Kirk, P. Baldo, Y.Q. Wang, A. Misra, G.J. Tucker, and M.L. Taheri, Achieving radiation tolerance through non-equilibrium grain boundary structures, Sci. Rep., 7(2017), art. No. 12275. doi: 10.1038/s41598-017-12407-2
    S.F.Li, Z.J. Zhou, J.S. Jang, M. Wang, H.L. Hu, H.Y. Sun, L. Zou, G.M. Zhang, and L.W. Zhang, The influence of Cr content on the mechanical properties of ODS ferritic steels, J. Nucl. Mater., 455(2014), No. 1-3, p. 194. doi: 10.1016/j.jnucmat.2014.05.061
    C. Pandey, M.M. Mahapatra, P. Kumar, R.S. Vidyrathy, and A. Srivastava, Microstructure-based assessment of creep rupture behaviour of cast-forged P91 steel, Mater. Sci. Eng. A, 695(2017), p. 291. doi: 10.1016/j.msea.2017.04.037
    T. Yamashiro, S. Ukai, N. Oono, S. Ohtsuka, and T. Kaito, Microstructural stability of 11Cr ODS steel, J. Nucl. Mater., 472(2016), p. 247. doi: 10.1016/j.jnucmat.2016.01.002
    J.J. Huet, Possible fast-reactor canning material strengthened and stabilized by dispersion, Powder Metall., 10(1967), No. 20, p. 208. doi: 10.1179/pom.1967.10.20.010
    C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, and E.A. Marquis, The formation and evolution of oxide particles in oxide-dispersion-strengthened ferritic steels during processing, Acta Mater., 61(2013), No. 6, p. 2219. doi: 10.1016/j.actamat.2012.12.042
    R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, and K. Miyahara, Tensile and creep properties of an oxide dispersion-strengthened ferritic steel, J. Nucl. Mater., 307-311(2002), p. 773. doi: 10.1016/S0022-3115(02)01046-2
    P. Dou, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and F. Abe, Polymorphic and coherency transition of Y–Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel, Acta Mater., 59(2011), No. 3, p. 992. doi: 10.1016/j.actamat.2010.10.026
    G.M. Zhang, Z.J. Zhou, K. Mo, P.H. Wang, Y.B. Miao, S.F. Li, M. Wang, X. Liu, M.Q. Gong, J. Almer, and J.F. Stubbins, The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy, J. Alloys Compd., 648(2015), p. 223. doi: 10.1016/j.jallcom.2015.06.214
    P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and F. Abe, TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition, J. Nucl. Mater., 444(2014), No. 1-3, p. 441. doi: 10.1016/j.jnucmat.2013.10.028
    P.Y. Yan, L.M. Yu, Y.C. Liu, C.X. Liu, H.J. Li, and J.F. Wu, Effects of Hf addition on the thermal stability of 16Cr–ODS steels at elevated aging temperatures, J. Alloys Compd., 739(2018), p. 368. doi: 10.1016/j.jallcom.2017.12.245
    S.J. Zinkle, J.L. Boutard, D.T. Hoelzer, A. Kimura, R. Lindau, G.R. Odette, M. Rieth, L. Tan, and H. Tanigawa, Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications, Nucl. Fusion, 57(2017), No. 9, art. No. 092055. doi: 10.1088/1741-4326/57/9/092005
    S. Xu, L.Z. Chen, S.G. Cao, H.D. Jia, and Z.J. Zhou, Research progress on microstructure design and control of ODS steels application for advanced nuclear energy systems, Mater. Rep., 33(2019), No. 1, p. 78.
    H.S. Legagneur, S. Vincent, J. Garnier, A.F. Gourgues-Lorenzon, and E. Andrieu, Anisotropic intergranular damage development and fracture in a 14Cr ferritic ODS steel under high-temperature tension and creep, Mater. Sci. Eng. A, 722(2018), p. 231. doi: 10.1016/j.msea.2018.02.102
    C. Dethloff, E. Gaganidze, and J. Aktaa, Quantitative TEM analysis of precipitation and grain boundary segregation in neutron irradiated EUROFER97, J. Nucl. Mater., 454(2014), No. 1-3, p. 323. doi: 10.1016/j.jnucmat.2014.07.078
    T. Jaumier, S. Vincent, L. Vincent, and R. Desmorat, Creep and damage anisotropies of 9%Cr and 14%Cr ODS steel cladding, J. Nucl. Mater., 518(2019), p. 274. doi: 10.1016/j.jnucmat.2019.02.041
    D. Kumar, U. Prakash, V.V. Dabhade, K. Laha, and T. Sakthivel, Development of oxide dispersion strengthened (ODS) ferritic steel through powder forging, J. Mater. Eng. Perform., 26(2017), p. 1817. doi: 10.1007/s11665-017-2573-2
    P. Wang, T.H. Yin, and S.X. Qu, On the grain size dependent working hardening behaviors of severe plastic deformation processed metals, Scripta Mater., 178(2020), p. 171. doi: 10.1016/j.scriptamat.2019.11.028
    Z.J. Yang, K.K. Wang, and Y. Yang, Optimization of ECAP–RAP process for preparing semisolid billet of 6061 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), p. 792. doi: 10.1007/s12613-019-1895-5
    L.M. Wang, Z.B. Wang, and K. Lu, Grain size effects on the austenitization process in a nanostructured ferritic steel, Acta Mater., 59(2011), No. 9, p. 3710. doi: 10.1016/j.actamat.2011.03.006
    S.H. Chen, X.J. Jin, and L.J. Rong, Improving the strength and ductility of reduced activation ferritic/martensitic steel by cold-swaging and post-annealing, Mater. Sci. Eng. A, 631(2015), p. 139. doi: 10.1016/j.msea.2015.02.044
    X.J. Jin, S.H. Chen, and L.J. Rong, Microstructure modification and mechanical property improvement of reduced activation ferritic/martensitic steel by severe plastic deformation, Mater. Sci. Eng. A, 712(2018), p. 97. doi: 10.1016/j.msea.2017.11.095
    J. Hoffmann, M. Rieth, L. Commin, P. Fernández, and M. Roldánb, Improvement of reduced activation 9%Cr steels by ausforming, Nucl. Mater. Energy, 6(2016), p. 12. doi: 10.1016/j.nme.2015.12.001
    X. Xiao, G.Q. Liu, B.F. Hu, J.S. Wang, and A. Ullah, Effect of V and Ta on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel, Mater. Charact., 82(2013), p. 130. doi: 10.1016/j.matchar.2013.05.006
    W.T. Huo, J.T. Shi, L.G. Hou, and J.S. Zhang, An improved thermo-mechanical treatment of high-strength Al–Zn–Mg–Cu alloy for effective grain refinement and ductility modification, J. Mater. Process. Technol., 239(2017), p. 303. doi: 10.1016/j.jmatprotec.2016.08.027
    R.L. Klueh, N. Hashimoto, and P.J. Maziasz, New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment, J. Nucl. Mater., 367–370(2007), p. 48. doi: 10.1016/j.jnucmat.2007.03.001
    P. Prakash, J. Vanaja, N. Srinivasan, P. Parameswaran, G.V.S. Nageswara Rao, and K. Laha, Effect of thermo-mechanical treatment on tensile properties of reduced activation ferritic-martensitic steel, Mater. Sci. Eng. A, 724(2018), p. 171. doi: 10.1016/j.msea.2018.03.080
    X. Xiao, G.Q. Liu,B.F. Hu, J.S. Wang, and W.B. Ma, Microstructure stability of V and Ta microalloyed 12% Cr reduced activation ferrite/martensite steel during long-term aging at 650°C, J. Mater. Sci. Technol., 31(2015), No. 3, p. 311. doi: 10.1016/j.jmst.2013.04.028
    L.X. Huang, Study on Evolution of Microstructure and Mechanical Properties Atelevated Temperature for CLAM Steel [Dissertation], Yanshan University, Qinghuangdao, 2014.
    B.Y. Zhong, B. Huang, C.J. Li, S.J. Liu, G. Xu, Y.Y. Zhao, and Q.Y. Huang, Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K, J. Nucl. Mater., 455(2014), No. 1-3, p. 640. doi: 10.1016/j.jnucmat.2014.08.041
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2646) PDF Downloads(141) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint