Cite this article as: |
Jenni Kiventerä, Priyadharshini Perumal, Juho Yliniemi, and Mirja Illikainen, Mine tailings as a raw material in alkali activation: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1009-1020. https://doi.org/10.1007/s12613-020-2129-6 |
Jenni Kiventerä E-mail: jenni.kiventera@oulu.fi
[1] |
M.W.A. Asad, M.A. Qureshi, and H. Jang, A review of cut-off grade policy models for open pit mining operations, Resour. Policy, 49(2016), p. 142. doi: 10.1016/j.resourpol.2016.05.005
|
[2] |
H.E. Jamieson, S.R. Walker, and M.B. Parsons, Mineralogical characterization of mine waste, Appl. Geochem., 57(2015), p. 85. doi: 10.1016/j.apgeochem.2014.12.014
|
[3] |
J.S. Adiansyah, M. Rosano, S. Vink, and G. Keir, A framework for a sustainable approach to mine tailings management: Disposal strategies, J. Cleaner Prod., 108(2015), p. 1050. doi: 10.1016/j.jclepro.2015.07.139
|
[4] |
B.G. Lottermoser, Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed., Springer-Verlag Berlin Heidelberg, New York, 2010.
|
[5] |
I. Park, C.B. Tabelin, S. Jeon, X.L. Li, K. Seno, M. Ito, and N. Hiroyoshi, A review of recent strategies for acid mine drainage prevention and mine tailings recycling, Chemosphere, 219(2019), p. 588. doi: 10.1016/j.chemosphere.2018.11.053
|
[6] |
M. Benzaazoua, T. Belem, and B. Bussière, Chemical factors that influence the performance of mine sulphidic paste backfill, Cem. Concr. Res., 32(2002), No. 7, p. 1133. doi: 10.1016/S0008-8846(02)00752-4
|
[7] |
B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci, and İ. Alp, Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings, J. Hazard. Mater., 168(2009), No. 2-3, p. 848. doi: 10.1016/j.jhazmat.2009.02.100
|
[8] |
M. Benzaazoua, J. Ouellet, S. Servant, P. Newman, and R. Verburg, Cementitious backfill with high sulfur content physical, chemical, and mineralogical characterization, Cem. Concr. Res., 29(1999), No. 5, p. 719. doi: 10.1016/S0008-8846(99)00023-X
|
[9] |
F. Rao and Q. Liu, Geopolymerization and its potential application in mine tailings consolidation: A review, Miner. Process. Extr. Metall. Rev., 36(2015), No. 6, p. 399. doi: 10.1080/08827508.2015.1055625
|
[10] |
S. Ahmari and L.Y. Zhang, Durability and leaching behavior of mine tailings-based geopolymer bricks, Constr. Build. Mater., 44(2013), p. 743. doi: 10.1016/j.conbuildmat.2013.03.075
|
[11] |
K. Komnitsas and D. Zaharaki, Geopolymerisation: A review and prospects for the minerals industry, Miner. Eng., 20(2007), No. 14, p. 1261. doi: 10.1016/j.mineng.2007.07.011
|
[12] |
S.R. Walker, H.E. Jamieson, A. Lanzirotti, C.F. Andrade, and G.E.M. Hall, The speciation of arsenic in iron oxides in mine wastes from the giant gold mine, N.W.T.: Application of synchrotron micro-XRD and micro-XANES at the grain scale, Can. Mineral., 43(2005), No. 4, p. 1205. doi: 10.2113/gscanmin.43.4.1205
|
[13] |
P. Kinnunen, A. Ismailov, S. Solismaa, H. Sreenivasan, M.-L. Räisänen, E. Levänen, and M. Illikainen, Recycling mine tailings in chemically bonded ceramics – A review, J. Cleaner Prod., 174(2018), p. 634. doi: 10.1016/j.jclepro.2017.10.280
|
[14] |
P.C. Singer and W. Stumm, Acidic mine drainage: The rate-determining step, Science, 167(1970), No. 3921, p. 1121. doi: 10.1126/science.167.3921.1121
|
[15] |
J.L. Provis and J.S.J. van Deventer, Alkali Activated Materials: State-Of-The-Art Report, RILEM TC 224-AAM, [in] RILEM State-of-the-Art Reports, Vol. 13, Springer Netherlands, New York, 2014.
|
[16] |
I. Lancellotti, L. Barbieri, and C. Leonelli, Use of alkali-activated concrete binders for toxic waste immobilization, [in] F. Pacheco-Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, and P. Chindaprasirt, eds., Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, Cambridge, 2015, p. 539.
|
[17] |
J.L. Provis, Immobilisation of toxic wastes in geopolymers, [in] J.L. Provis and J.S.J. van Deventer, eds., Geopolymers: Structures, Processing, Properties and Industrial Applications, Woodhead Publishing, Cambridge, 2009, p. 421.
|
[18] |
J.L. Provis, Activating solution chemistry for geopolymers, [in] J.L. Provis and J.S.J. van Deventer, eds., Geopolymers: Structures, Processing, Properties and Industrial Applications, Woodhead Publishing, Cambridge, 2009, p. 50.
|
[19] |
J.G.S. Van Jaarsveld, J.S.J. Van Deventer, and L. Lorenzen, The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications, Miner. Eng., 10(1997), No. 7, p. 659. doi: 10.1016/S0892-6875(97)00046-0
|
[20] |
J. Deja, Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders, Cem. Concr. Res., 32(2002), No. 12, p. 1971. doi: 10.1016/S0008-8846(02)00904-3
|
[21] |
H. Sreenivasan, P. Kinnunen, E.-P. Heikkinen, and M. Illikainen, Thermally treated phlogopite as magnesium-rich precursor for alkali activation purpose, Miner. Eng., 113(2017), p. 47. doi: 10.1016/j.mineng.2017.08.003
|
[22] |
L.Y. Zhang, S. Ahmari, and J.H. Zhang, Synthesis and characterization of fly ash modified mine tailings-based geopolymers, Constr. Build. Mater., 25(2011), No. 9, p. 3773. doi: 10.1016/j.conbuildmat.2011.04.005
|
[23] |
S.G. Son, Y.D. Kim, W.K. Lee, and K.N. Kim, Properties of the alumino–silicate geopolymer using mine tailing and granulated slag, J. Ceram. Process. Res., 14(2013), No. 5, p. 591.
|
[24] |
J. Kiventerä, L. Golek, J. Yliniemi, V. Ferreira, J. Deja, and M. Illikainen, Utilization of sulphidic tailings from gold mine as a raw material in geopolymerization, Int. J. Miner. Process., 149(2016), p. 104. doi: 10.1016/j.minpro.2016.02.012
|
[25] |
E.V. Kalinkina, B.I. Gurevich, and A.M. Kalinkin, Alkali-activated binder based on milled antigorite, Minerals, 8(2018), No. 11, p. 503. doi: 10.3390/min8110503
|
[26] |
P. Perumal, K. Piekkari, H. Sreenivasan, P. Kinnunen, and M. Illikainen, One-part geopolymers from mining residues – Effect of thermal treatment on three different tailings, Miner. Eng., 144(2019), art. No. 106026. doi: 10.1016/j.mineng.2019.106026
|
[27] |
H. Niu, P. Kinnunen, H. Sreenivasan, E. Adesanya, and M. Illikainen, Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential, Miner. Eng., 151(2020), art. No. 106331. doi: 10.1016/j.mineng.2020.106331
|
[28] |
P.N. Lemougna, J. Yliniemi, A. Ismailov, E. Levanen, P. Tanskanen, P. Kinnunen, J. Roning, and M. Illikainen, Recycling lithium mine tailings in the production of low temperature (700–900°C) ceramics: Effect of ladle slag and sodium compounds on the processing and final properties, Constr. Build. Mater., 221(2019), p. 332. doi: 10.1016/j.conbuildmat.2019.06.078
|
[29] |
J. Davidovits, Waste Solidification and Disposal Method, US Patent, Appl. 4859367, 1989.
|
[30] |
J.G.S. van Jaarsveld, G.C. Lukey, J.S.J. van Deventer, and A. Graham, The stabilisation of mine tailings by reactive geopolymerisation, [in] International Congress on Mineral Processing and Extractive Metallurgy, Melbourne, 2000, p. 363.
|
[31] |
S. Ahmari and L.Y. Zhang, Production of eco-friendly bricks from copper mine tailings through geopolymerization, Constr. Build. Mater., 29(2012), p. 323. doi: 10.1016/j.conbuildmat.2011.10.048
|
[32] |
S. Ahmari and L.Y. Zhang, Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks, Constr. Build. Mater., 40(2013), p. 1002. doi: 10.1016/j.conbuildmat.2012.11.069
|
[33] |
L. Manjarrez and L.Y. Zhang, Utilization of copper mine tailings as road base construction material through geopolymerization, J. Mater. Civ. Eng., 30(2018), No. 9, art. No. 04018201. doi: 10.1061/(ASCE)MT.1943-5533.0002397
|
[34] |
Q. Wan, F. Rao, S.X. Song, C.A. Leon-Patino, Y.Q. Ma, and W.Z. Yin, Consolidation of mine tailings through geopolymerization at ambient temperature, J. Am. Ceram. Soc., 102(2019), No. 5, p. 2451. doi: 10.1111/jace.16183
|
[35] |
A. Wang, H.Z. Liu, X.F. Hao, Y. Wang, X.Q. Liu, and Z. Li, Geopolymer synthesis using garnet tailings from molybdenum mines, Minerals., 9(2019), No. 1, p. 48. doi: 10.3390/min9010048
|
[36] |
J. Kiventerä, I. Lancellotti, M. Catauro, F.D. Poggetto, C. Leonelli, and M. Illikainen, Alkali activation as new option for gold mine tailings inertization, J. Cleaner Prod., 187(2018), p. 76. doi: 10.1016/j.jclepro.2018.03.182
|
[37] |
H.Q. Jiang, Z.J. Qi, E. Yilmaz, J. Han, J.P. Qiu, and C.L. Dong, Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills, Constr. Build. Mater., 218(2019), p. 689. doi: 10.1016/j.conbuildmat.2019.05.162
|
[38] |
F. Cihangir, B. Ercikdi, A. Kesimal, A. Turan, and H. Deveci, Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage, Miner. Eng., 30(2012), p. 33. doi: 10.1016/j.mineng.2012.01.009
|
[39] |
I. Capasso, S. Lirer, A. Flora, C. Ferone, R. Cioffi, D. Caputo, and B. Liguori, Reuse of mining waste as aggregates in fly ash-based geopolymers, J. Cleaner Prod., 220(2019), p. 65. doi: 10.1016/j.jclepro.2019.02.164
|
[40] |
M. Falah, R. Obenaus-Emler, P. Kinnunen, and M. Illikainen, , Effects of activator properties and curing conditions on alkali-activation of low-alumina mine tailings, Waste Biomass Valorizatio, 11(2020), No. 9, p. 5027. doi: 10.1007/s12649-019-00781-z
|
[41] |
X.K. Jiao, Y.M. Zhang, and T.J. Chen, Thermal stability of a silica-rich vanadium tailing based geopolymer, Constr. Build. Mater., 38(2013), p. 43. doi: 10.1016/j.conbuildmat.2012.06.076
|
[42] |
L. Yu, Z. Zhang, X. Huang, B.Q. Jiao, and D.W. Li, Enhancement experiment on cementitious activity of copper-mine tailings in a geopolymer system, Fibers, 5(2017), No. 4, p. 47. doi: 10.3390/fib5040047
|
[43] |
E. Adesanya, K. Ohenoja, J. Yliniemi, and M. Illikainen, Mechanical transformation of phyllite mineralogy toward its use as alkali-activated binder precursor, Miner. Eng., 145(2020), art. No. 106093. doi: 10.1016/j.mineng.2019.106093
|
[44] |
C. Ferone, B. Liguori, I. Capasso, F. Colangelo, R. Cioffi, E. Cappelletto, and R. Di Maggio, Thermally treated clay sediments as geopolymer source material, Appl. Clay Sci., 107(2015), p. 195. doi: 10.1016/j.clay.2015.01.027
|
[45] |
D. Bondar, C.J. Lynsdale, N.B. Milestone, N. Hassani, and A.A. Ramezanianpour, Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans, Constr. Build. Mater., 25(2011), No. 10, p. 4065. doi: 10.1016/j.conbuildmat.2011.04.044
|
[46] |
H. Xu and J.S.J. Van Deventer, Geopolymerisation of multiple minerals, Miner. Eng., 15(2002), No. 12, p. 1131. doi: 10.1016/S0892-6875(02)00255-8
|
[47] |
F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders, Cem. Concr. Res., 37(2007), No. 6, p. 933. doi: 10.1016/j.cemconres.2007.02.006
|
[48] |
F. Pacheco-Torgal, J.P. Castro-Gomes, and S. Jalali, Investigations on mix design of tungsten mine waste geopolymeric binder, Constr. Build. Mater., 22(2008), No. 9, p. 1939. doi: 10.1016/j.conbuildmat.2007.07.015
|
[49] |
F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, Durability and environmental performance of alkali-activated tungsten mine waste mud mortars, J. Mater. Civ. Eng., 22(2010), No. 9, p. 897. doi: 10.1061/(ASCE)MT.1943-5533.0000092
|
[50] |
J. Kiventerä, H. Sreenivasan, C. Cheeseman, P. Kinnunen, and M. Illikainen, Immobilization of sulfates and heavy metals in gold mine tailings by sodium silicate and hydrated lime, J. Environ. Chem. Eng., 6(2018), No. 5, p. 6530. doi: 10.1016/j.jece.2018.10.012
|
[51] |
S. Aydın and C.Ç. Kızıltepe, Valorization of boron mine tailings in alkali-activated mortars, J. Mater. Civ. Eng., 31(2019), No. 10, p. 04019224. doi: 10.1061/(ASCE)MT.1943-5533.0002871
|
[52] |
D.W. Feng, J.L. Provis, and J.S.J. van Deventer, Thermal activation of albite for the synthesis of one-part mix geopolymers, J. Am. Ceram. Soc., 95(2012), No. 2, p. 565. doi: 10.1111/j.1551-2916.2011.04925.x
|
[53] |
S. Moukannaa, M. Loutou, M. Benzaazoua, L. Vitola, J. Alami, and R. Hakkou, Recycling of phosphate mine tailings for the production of geopolymers, J. Cleaner Prod., 185(2018), p. 891. doi: 10.1016/j.jclepro.2018.03.094
|
[54] |
M. Naghsh and K. Shams, Synthesis of a kaolin-based geopolymer using a novel fusion method and its application in effective water softening, Appl. Clay Sci., 146(2017), p. 238. doi: 10.1016/j.clay.2017.06.008
|
[55] |
H. Tchakoute Kouamo, J.A. Mbey, A. Elimbi, B.B. Kenne Diffo, and D. Njopwouo, Synthesis of volcanic ash-based geopolymer mortars by fusion method: Effects of adding metakaolin to fused volcanic ash, Ceram. Int., 39(2013), No. 2, p. 1613. doi: 10.1016/j.ceramint.2012.08.003
|
[56] |
L.N. Tchadjié, J.N.Y. Djobo, N. Ranjbar, H.K. Tchakouté, B.B.D. Kenne, A. Elimbi, and D. Njopwouo, Potential of using granite waste as raw material for geopolymer synthesis, Ceram. Int., 42(2016), No. 2, p. 3046. doi: 10.1016/j.ceramint.2015.10.091
|
[57] |
F. Demir and E.M. Derun, Modelling and optimization of gold mine tailings based geopolymer by using response surface method and its application in Pb2+ removal, J. Cleaner Prod., 237(2019), art. No. 117766. doi: 10.1016/j.jclepro.2019.117766
|
[58] |
S. Moukannaa, A. Nazari, A. Bagheri, M. Loutou, J.G. Sanjayan, and R. Hakkou, Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: Thermal stability, mechanical and microstructural properties, J. Non-Cryst. Solids, 511(2019), p. 76. doi: 10.1016/j.jnoncrysol.2018.12.031
|
[59] |
J.G.S. Van Jaarsveld, J.S.J. Van Deventer, and A. Schwartzman, The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics, Miner. Eng., 12(1999), No. 1, p. 75. doi: 10.1016/S0892-6875(98)00121-6
|
[60] |
Q. Wan, F. Rao, S.X. Song, R. Morales-Estrella, X. Xie, and X. Tong, Chemical forms of lead immobilization in alkali-activated binders based on mine tailings, Cem. Concr. Compos., 92(2018), p. 198. doi: 10.1016/j.cemconcomp.2018.06.011
|
[61] |
I.P. Giannopoulou and D. Panias, Development of geopolymeric materials from industrial solid wastes, [in] 2nd International Conference on Advances in Mineral Resources Management and Environmental Geotechnology, Hania, Greece, 2006, p. 69.
|
[62] |
C. Vandecasteele, V. Dutré, D. Geysen, and G. Wauters, Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic, Waste Manage., 22(2002), No. 2, p. 143. doi: 10.1016/S0956-053X(01)00062-9
|
[63] |
M. Chrysochoou and D. Dermatas, Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study, J. Hazard. Mater., 136(2006), No. 1, p. 20. doi: 10.1016/j.jhazmat.2005.11.008
|
[64] |
J. Kiventerä, K. Piekkari, V. Isteri, K. Ohenoja, P. Tanskanen, and M. Illikainen, Solidification/stabilization of gold mine tailings using calcium sulfoaluminate–belite cement, J. Cleaner Prod., 239(2019), art. No. 118008. doi: 10.1016/j.jclepro.2019.118008
|
[65] |
H. Nguyen, E. Adesanya, K. Ohenoja, L. Kriskova, Y. Pontikes, P. Kinnunen, and M. Illikainen, Byproduct-based ettringite binder – A synergy between ladle slag and gypsum, Constr. Build. Mater., 197(2019), p. 143. doi: 10.1016/j.conbuildmat.2018.11.165
|
[66] |
M. Sarkkinen, K. Kujala, and S. Gehör, Efficiency of MgO activated GGBFS and OPC in the stabilization of highly sulfidic mine tailings, J. Sustainable Min., 18(2019), No. 3, p. 115. doi: 10.1016/j.jsm.2019.04.001
|
[67] |
M. Rico, G. Benito, and A. Díez-Herrero, Floods from tailings dam failures, J. Hazard. Mater., 154(2008), No. 1-3, p. 79. doi: 10.1016/j.jhazmat.2007.09.110
|