Jenni Kiventerä, Priyadharshini Perumal, Juho Yliniemi, and Mirja Illikainen, Mine tailings as a raw material in alkali activation: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1009-1020. https://doi.org/10.1007/s12613-020-2129-6
Cite this article as:
Jenni Kiventerä, Priyadharshini Perumal, Juho Yliniemi, and Mirja Illikainen, Mine tailings as a raw material in alkali activation: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 8, pp. 1009-1020. https://doi.org/10.1007/s12613-020-2129-6
Invited Review

Mine tailings as a raw material in alkali activation: A review

+ Author Affiliations
  • Corresponding author:

    Jenni Kiventerä    E-mail: jenni.kiventera@oulu.fi

  • Received: 20 February 2020Revised: 24 June 2020Accepted: 28 June 2020Available online: 30 June 2020
  • The mining industry produces billions of tons of mine tailings annually. However, because of their lack of economic value, most of the tailings are discarded near the mining sites, typically under water. The primary environmental concerns of mine tailings are related to their heavy metal and sulfidic mineral content. Oxidation of sulfidic minerals can produce acid mine drainage that leaches heavy metals into the surrounding water. The management of tailing dams requires expensive construction and careful control, and there is the need for stable, sustainable, and economically viable management technologies. Alkali activation as a solidification/stabilization technology offers an attractive way to deal with mine tailings. Alkali activated materials are hardened, concrete-like structures that can be formed from raw materials that are rich in aluminum and silicon, which fortunately, are the main elements in mining residues. Furthermore, alkali activation can immobilize harmful heavy metals within the structure. This review describes the research on alkali activated mine tailings. The reactivity and chemistry of different minerals are discussed. Since many mine tailings are poorly reactive under alkaline conditions, different pretreatment methods and their effects on the mineralogy are reviewed. Possible applications for these materials are also discussed.
  • loading
  • [1]
    M.W.A. Asad, M.A. Qureshi, and H. Jang, A review of cut-off grade policy models for open pit mining operations, Resour. Policy, 49(2016), p. 142. doi: 10.1016/j.resourpol.2016.05.005
    [2]
    H.E. Jamieson, S.R. Walker, and M.B. Parsons, Mineralogical characterization of mine waste, Appl. Geochem., 57(2015), p. 85. doi: 10.1016/j.apgeochem.2014.12.014
    [3]
    J.S. Adiansyah, M. Rosano, S. Vink, and G. Keir, A framework for a sustainable approach to mine tailings management: Disposal strategies, J. Cleaner Prod., 108(2015), p. 1050. doi: 10.1016/j.jclepro.2015.07.139
    [4]
    B.G. Lottermoser, Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed., Springer-Verlag Berlin Heidelberg, New York, 2010.
    [5]
    I. Park, C.B. Tabelin, S. Jeon, X.L. Li, K. Seno, M. Ito, and N. Hiroyoshi, A review of recent strategies for acid mine drainage prevention and mine tailings recycling, Chemosphere, 219(2019), p. 588. doi: 10.1016/j.chemosphere.2018.11.053
    [6]
    M. Benzaazoua, T. Belem, and B. Bussière, Chemical factors that influence the performance of mine sulphidic paste backfill, Cem. Concr. Res., 32(2002), No. 7, p. 1133. doi: 10.1016/S0008-8846(02)00752-4
    [7]
    B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci, and İ. Alp, Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings, J. Hazard. Mater., 168(2009), No. 2-3, p. 848. doi: 10.1016/j.jhazmat.2009.02.100
    [8]
    M. Benzaazoua, J. Ouellet, S. Servant, P. Newman, and R. Verburg, Cementitious backfill with high sulfur content physical, chemical, and mineralogical characterization, Cem. Concr. Res., 29(1999), No. 5, p. 719. doi: 10.1016/S0008-8846(99)00023-X
    [9]
    F. Rao and Q. Liu, Geopolymerization and its potential application in mine tailings consolidation: A review, Miner. Process. Extr. Metall. Rev., 36(2015), No. 6, p. 399. doi: 10.1080/08827508.2015.1055625
    [10]
    S. Ahmari and L.Y. Zhang, Durability and leaching behavior of mine tailings-based geopolymer bricks, Constr. Build. Mater., 44(2013), p. 743. doi: 10.1016/j.conbuildmat.2013.03.075
    [11]
    K. Komnitsas and D. Zaharaki, Geopolymerisation: A review and prospects for the minerals industry, Miner. Eng., 20(2007), No. 14, p. 1261. doi: 10.1016/j.mineng.2007.07.011
    [12]
    S.R. Walker, H.E. Jamieson, A. Lanzirotti, C.F. Andrade, and G.E.M. Hall, The speciation of arsenic in iron oxides in mine wastes from the giant gold mine, N.W.T.: Application of synchrotron micro-XRD and micro-XANES at the grain scale, Can. Mineral., 43(2005), No. 4, p. 1205. doi: 10.2113/gscanmin.43.4.1205
    [13]
    P. Kinnunen, A. Ismailov, S. Solismaa, H. Sreenivasan, M.-L. Räisänen, E. Levänen, and M. Illikainen, Recycling mine tailings in chemically bonded ceramics – A review, J. Cleaner Prod., 174(2018), p. 634. doi: 10.1016/j.jclepro.2017.10.280
    [14]
    P.C. Singer and W. Stumm, Acidic mine drainage: The rate-determining step, Science, 167(1970), No. 3921, p. 1121. doi: 10.1126/science.167.3921.1121
    [15]
    J.L. Provis and J.S.J. van Deventer, Alkali Activated Materials: State-Of-The-Art Report, RILEM TC 224-AAM, [in] RILEM State-of-the-Art Reports, Vol. 13, Springer Netherlands, New York, 2014.
    [16]
    I. Lancellotti, L. Barbieri, and C. Leonelli, Use of alkali-activated concrete binders for toxic waste immobilization, [in] F. Pacheco-Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, and P. Chindaprasirt, eds., Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, Cambridge, 2015, p. 539.
    [17]
    J.L. Provis, Immobilisation of toxic wastes in geopolymers, [in] J.L. Provis and J.S.J. van Deventer, eds., Geopolymers: Structures, Processing, Properties and Industrial Applications, Woodhead Publishing, Cambridge, 2009, p. 421.
    [18]
    J.L. Provis, Activating solution chemistry for geopolymers, [in] J.L. Provis and J.S.J. van Deventer, eds., Geopolymers: Structures, Processing, Properties and Industrial Applications, Woodhead Publishing, Cambridge, 2009, p. 50.
    [19]
    J.G.S. Van Jaarsveld, J.S.J. Van Deventer, and L. Lorenzen, The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications, Miner. Eng., 10(1997), No. 7, p. 659. doi: 10.1016/S0892-6875(97)00046-0
    [20]
    J. Deja, Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders, Cem. Concr. Res., 32(2002), No. 12, p. 1971. doi: 10.1016/S0008-8846(02)00904-3
    [21]
    H. Sreenivasan, P. Kinnunen, E.-P. Heikkinen, and M. Illikainen, Thermally treated phlogopite as magnesium-rich precursor for alkali activation purpose, Miner. Eng., 113(2017), p. 47. doi: 10.1016/j.mineng.2017.08.003
    [22]
    L.Y. Zhang, S. Ahmari, and J.H. Zhang, Synthesis and characterization of fly ash modified mine tailings-based geopolymers, Constr. Build. Mater., 25(2011), No. 9, p. 3773. doi: 10.1016/j.conbuildmat.2011.04.005
    [23]
    S.G. Son, Y.D. Kim, W.K. Lee, and K.N. Kim, Properties of the alumino–silicate geopolymer using mine tailing and granulated slag, J. Ceram. Process. Res., 14(2013), No. 5, p. 591.
    [24]
    J. Kiventerä, L. Golek, J. Yliniemi, V. Ferreira, J. Deja, and M. Illikainen, Utilization of sulphidic tailings from gold mine as a raw material in geopolymerization, Int. J. Miner. Process., 149(2016), p. 104. doi: 10.1016/j.minpro.2016.02.012
    [25]
    E.V. Kalinkina, B.I. Gurevich, and A.M. Kalinkin, Alkali-activated binder based on milled antigorite, Minerals, 8(2018), No. 11, p. 503. doi: 10.3390/min8110503
    [26]
    P. Perumal, K. Piekkari, H. Sreenivasan, P. Kinnunen, and M. Illikainen, One-part geopolymers from mining residues – Effect of thermal treatment on three different tailings, Miner. Eng., 144(2019), art. No. 106026. doi: 10.1016/j.mineng.2019.106026
    [27]
    H. Niu, P. Kinnunen, H. Sreenivasan, E. Adesanya, and M. Illikainen, Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential, Miner. Eng., 151(2020), art. No. 106331. doi: 10.1016/j.mineng.2020.106331
    [28]
    P.N. Lemougna, J. Yliniemi, A. Ismailov, E. Levanen, P. Tanskanen, P. Kinnunen, J. Roning, and M. Illikainen, Recycling lithium mine tailings in the production of low temperature (700–900°C) ceramics: Effect of ladle slag and sodium compounds on the processing and final properties, Constr. Build. Mater., 221(2019), p. 332. doi: 10.1016/j.conbuildmat.2019.06.078
    [29]
    J. Davidovits, Waste Solidification and Disposal Method, US Patent, Appl. 4859367, 1989.
    [30]
    J.G.S. van Jaarsveld, G.C. Lukey, J.S.J. van Deventer, and A. Graham, The stabilisation of mine tailings by reactive geopolymerisation, [in] International Congress on Mineral Processing and Extractive Metallurgy, Melbourne, 2000, p. 363.
    [31]
    S. Ahmari and L.Y. Zhang, Production of eco-friendly bricks from copper mine tailings through geopolymerization, Constr. Build. Mater., 29(2012), p. 323. doi: 10.1016/j.conbuildmat.2011.10.048
    [32]
    S. Ahmari and L.Y. Zhang, Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks, Constr. Build. Mater., 40(2013), p. 1002. doi: 10.1016/j.conbuildmat.2012.11.069
    [33]
    L. Manjarrez and L.Y. Zhang, Utilization of copper mine tailings as road base construction material through geopolymerization, J. Mater. Civ. Eng., 30(2018), No. 9, art. No. 04018201. doi: 10.1061/(ASCE)MT.1943-5533.0002397
    [34]
    Q. Wan, F. Rao, S.X. Song, C.A. Leon-Patino, Y.Q. Ma, and W.Z. Yin, Consolidation of mine tailings through geopolymerization at ambient temperature, J. Am. Ceram. Soc., 102(2019), No. 5, p. 2451. doi: 10.1111/jace.16183
    [35]
    A. Wang, H.Z. Liu, X.F. Hao, Y. Wang, X.Q. Liu, and Z. Li, Geopolymer synthesis using garnet tailings from molybdenum mines, Minerals., 9(2019), No. 1, p. 48. doi: 10.3390/min9010048
    [36]
    J. Kiventerä, I. Lancellotti, M. Catauro, F.D. Poggetto, C. Leonelli, and M. Illikainen, Alkali activation as new option for gold mine tailings inertization, J. Cleaner Prod., 187(2018), p. 76. doi: 10.1016/j.jclepro.2018.03.182
    [37]
    H.Q. Jiang, Z.J. Qi, E. Yilmaz, J. Han, J.P. Qiu, and C.L. Dong, Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills, Constr. Build. Mater., 218(2019), p. 689. doi: 10.1016/j.conbuildmat.2019.05.162
    [38]
    F. Cihangir, B. Ercikdi, A. Kesimal, A. Turan, and H. Deveci, Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage, Miner. Eng., 30(2012), p. 33. doi: 10.1016/j.mineng.2012.01.009
    [39]
    I. Capasso, S. Lirer, A. Flora, C. Ferone, R. Cioffi, D. Caputo, and B. Liguori, Reuse of mining waste as aggregates in fly ash-based geopolymers, J. Cleaner Prod., 220(2019), p. 65. doi: 10.1016/j.jclepro.2019.02.164
    [40]
    M. Falah, R. Obenaus-Emler, P. Kinnunen, and M. Illikainen, , Effects of activator properties and curing conditions on alkali-activation of low-alumina mine tailings, Waste Biomass Valorizatio, 11(2020), No. 9, p. 5027. doi: 10.1007/s12649-019-00781-z
    [41]
    X.K. Jiao, Y.M. Zhang, and T.J. Chen, Thermal stability of a silica-rich vanadium tailing based geopolymer, Constr. Build. Mater., 38(2013), p. 43. doi: 10.1016/j.conbuildmat.2012.06.076
    [42]
    L. Yu, Z. Zhang, X. Huang, B.Q. Jiao, and D.W. Li, Enhancement experiment on cementitious activity of copper-mine tailings in a geopolymer system, Fibers, 5(2017), No. 4, p. 47. doi: 10.3390/fib5040047
    [43]
    E. Adesanya, K. Ohenoja, J. Yliniemi, and M. Illikainen, Mechanical transformation of phyllite mineralogy toward its use as alkali-activated binder precursor, Miner. Eng., 145(2020), art. No. 106093. doi: 10.1016/j.mineng.2019.106093
    [44]
    C. Ferone, B. Liguori, I. Capasso, F. Colangelo, R. Cioffi, E. Cappelletto, and R. Di Maggio, Thermally treated clay sediments as geopolymer source material, Appl. Clay Sci., 107(2015), p. 195. doi: 10.1016/j.clay.2015.01.027
    [45]
    D. Bondar, C.J. Lynsdale, N.B. Milestone, N. Hassani, and A.A. Ramezanianpour, Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans, Constr. Build. Mater., 25(2011), No. 10, p. 4065. doi: 10.1016/j.conbuildmat.2011.04.044
    [46]
    H. Xu and J.S.J. Van Deventer, Geopolymerisation of multiple minerals, Miner. Eng., 15(2002), No. 12, p. 1131. doi: 10.1016/S0892-6875(02)00255-8
    [47]
    F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders, Cem. Concr. Res., 37(2007), No. 6, p. 933. doi: 10.1016/j.cemconres.2007.02.006
    [48]
    F. Pacheco-Torgal, J.P. Castro-Gomes, and S. Jalali, Investigations on mix design of tungsten mine waste geopolymeric binder, Constr. Build. Mater., 22(2008), No. 9, p. 1939. doi: 10.1016/j.conbuildmat.2007.07.015
    [49]
    F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, Durability and environmental performance of alkali-activated tungsten mine waste mud mortars, J. Mater. Civ. Eng., 22(2010), No. 9, p. 897. doi: 10.1061/(ASCE)MT.1943-5533.0000092
    [50]
    J. Kiventerä, H. Sreenivasan, C. Cheeseman, P. Kinnunen, and M. Illikainen, Immobilization of sulfates and heavy metals in gold mine tailings by sodium silicate and hydrated lime, J. Environ. Chem. Eng., 6(2018), No. 5, p. 6530. doi: 10.1016/j.jece.2018.10.012
    [51]
    S. Aydın and C.Ç. Kızıltepe, Valorization of boron mine tailings in alkali-activated mortars, J. Mater. Civ. Eng., 31(2019), No. 10, p. 04019224. doi: 10.1061/(ASCE)MT.1943-5533.0002871
    [52]
    D.W. Feng, J.L. Provis, and J.S.J. van Deventer, Thermal activation of albite for the synthesis of one-part mix geopolymers, J. Am. Ceram. Soc., 95(2012), No. 2, p. 565. doi: 10.1111/j.1551-2916.2011.04925.x
    [53]
    S. Moukannaa, M. Loutou, M. Benzaazoua, L. Vitola, J. Alami, and R. Hakkou, Recycling of phosphate mine tailings for the production of geopolymers, J. Cleaner Prod., 185(2018), p. 891. doi: 10.1016/j.jclepro.2018.03.094
    [54]
    M. Naghsh and K. Shams, Synthesis of a kaolin-based geopolymer using a novel fusion method and its application in effective water softening, Appl. Clay Sci., 146(2017), p. 238. doi: 10.1016/j.clay.2017.06.008
    [55]
    H. Tchakoute Kouamo, J.A. Mbey, A. Elimbi, B.B. Kenne Diffo, and D. Njopwouo, Synthesis of volcanic ash-based geopolymer mortars by fusion method: Effects of adding metakaolin to fused volcanic ash, Ceram. Int., 39(2013), No. 2, p. 1613. doi: 10.1016/j.ceramint.2012.08.003
    [56]
    L.N. Tchadjié, J.N.Y. Djobo, N. Ranjbar, H.K. Tchakouté, B.B.D. Kenne, A. Elimbi, and D. Njopwouo, Potential of using granite waste as raw material for geopolymer synthesis, Ceram. Int., 42(2016), No. 2, p. 3046. doi: 10.1016/j.ceramint.2015.10.091
    [57]
    F. Demir and E.M. Derun, Modelling and optimization of gold mine tailings based geopolymer by using response surface method and its application in Pb2+ removal, J. Cleaner Prod., 237(2019), art. No. 117766. doi: 10.1016/j.jclepro.2019.117766
    [58]
    S. Moukannaa, A. Nazari, A. Bagheri, M. Loutou, J.G. Sanjayan, and R. Hakkou, Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: Thermal stability, mechanical and microstructural properties, J. Non-Cryst. Solids, 511(2019), p. 76. doi: 10.1016/j.jnoncrysol.2018.12.031
    [59]
    J.G.S. Van Jaarsveld, J.S.J. Van Deventer, and A. Schwartzman, The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics, Miner. Eng., 12(1999), No. 1, p. 75. doi: 10.1016/S0892-6875(98)00121-6
    [60]
    Q. Wan, F. Rao, S.X. Song, R. Morales-Estrella, X. Xie, and X. Tong, Chemical forms of lead immobilization in alkali-activated binders based on mine tailings, Cem. Concr. Compos., 92(2018), p. 198. doi: 10.1016/j.cemconcomp.2018.06.011
    [61]
    I.P. Giannopoulou and D. Panias, Development of geopolymeric materials from industrial solid wastes, [in] 2nd International Conference on Advances in Mineral Resources Management and Environmental Geotechnology, Hania, Greece, 2006, p. 69.
    [62]
    C. Vandecasteele, V. Dutré, D. Geysen, and G. Wauters, Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic, Waste Manage., 22(2002), No. 2, p. 143. doi: 10.1016/S0956-053X(01)00062-9
    [63]
    M. Chrysochoou and D. Dermatas, Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study, J. Hazard. Mater., 136(2006), No. 1, p. 20. doi: 10.1016/j.jhazmat.2005.11.008
    [64]
    J. Kiventerä, K. Piekkari, V. Isteri, K. Ohenoja, P. Tanskanen, and M. Illikainen, Solidification/stabilization of gold mine tailings using calcium sulfoaluminate–belite cement, J. Cleaner Prod., 239(2019), art. No. 118008. doi: 10.1016/j.jclepro.2019.118008
    [65]
    H. Nguyen, E. Adesanya, K. Ohenoja, L. Kriskova, Y. Pontikes, P. Kinnunen, and M. Illikainen, Byproduct-based ettringite binder – A synergy between ladle slag and gypsum, Constr. Build. Mater., 197(2019), p. 143. doi: 10.1016/j.conbuildmat.2018.11.165
    [66]
    M. Sarkkinen, K. Kujala, and S. Gehör, Efficiency of MgO activated GGBFS and OPC in the stabilization of highly sulfidic mine tailings, J. Sustainable Min., 18(2019), No. 3, p. 115. doi: 10.1016/j.jsm.2019.04.001
    [67]
    M. Rico, G. Benito, and A. Díez-Herrero, Floods from tailings dam failures, J. Hazard. Mater., 154(2008), No. 1-3, p. 79. doi: 10.1016/j.jhazmat.2007.09.110
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(4)

    Share Article

    Article Metrics

    Article views (653) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return