Cite this article as: |
Chen-teng Sun, Qian Xu, Yan-ping Xiao, and Yong-xiang Yang, Electrochemical deposition of Nd and Nd–Fe alloy from Cu6Nd alloy in a NaCl–KCl–NdCl3 melt, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1650-1656. https://doi.org/10.1007/s12613-020-2130-0 |
Qian Xu E-mail: qianxu@shu.edu.cn
Electrorefining effectively separates metals from their corresponding alloys. To obtain Nd from Cu6Nd alloy, cyclic voltammetry and square wave voltammetry were used to investigate the reduction behavior of Nd3+ and the anode dissolution behavior of Cu6Nd in the NaCl–KCl–0.5mol%NdCl3 melt at 1023 K. According to the analysis of the electrochemical behavior, the cell voltage was determined to be between 0.3 and 1.2 V for separating Nd from Cu6Nd. After electrolysis at 0.6 V for 4 h, the Nd was found at the surface of the Mo cathode without any Cu. For the Fe cathode, a deposition with an atom ratio of Nd : Fe = 1:1 was formed on the surface. However, the low current density of separation remains a great experimental challenge that must be solved.
[1] |
K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochemical formation of Dy–Ni alloys in molten NaCl–KCl–DyCl3, Electrochim. Acta, 106(2013), p. 293. doi: 10.1016/j.electacta.2013.05.095
|
[2] |
A. Schreiber, J. Marx, P. Zapp, and W. Kuckshinrichs, Comparative life cycle assessment of neodymium oxide electrolysis in molten salt, Adv. Eng. Mater., 22(2020), No. 6, art. No. 1901206. doi: 10.1002/adem.201901206
|
[3] |
J.A. De Castro, D. Rodrigues, and M.F. De Campos, From neodymium oxide to NdFeB alloy: An overview on the reduction methods, [in] REPM 2014 - 23rd International Workshop on Rare Earth and Future Permanent Magnets and Their Applications, Annapolis, 2014, p. 358.
|
[4] |
S. Singh, J.M. Juneja, and D.K. Bose, Preparation of neodymium-iron alloys by electrolysis in a fused chloride bath, J. Appl. Electrochem., 25(1995), p. 1139.
|
[5] |
R.A. Sharma, Neodymium production processes, JOM, 39(1987), No. 2, p. 33. doi: 10.1007/BF03259468
|
[6] |
R.A. Sharma and R.N. Seefurth, Metallothermic reduction of Nd2O3 with Ca in CaCl2–NaCl melts, J. Electrochem. Soc., 135(1988), No. 1, p. 66. doi: 10.1149/1.2095591
|
[7] |
X.L. Guo, Z. Sun, J. Sietsma, B. Blanpain, M.X. Guo, and Y.X. Yang, Quantitative study on dissolution behavior of Nd2O3 in fluoride melts, Ind. Eng. Chem. Res., 57(2018), No. 5, p. 1380. doi: 10.1021/acs.iecr.7b04125
|
[8] |
A. Kaneko, Y. Yamamoto, and C. Okada, Electrochemistry of rare earth fluoride molten salts, J. Alloys Compd., 193(1993), No. 1-2, p. 44. doi: 10.1016/0925-8388(93)90305-7
|
[9] |
I.A. Ødegård and G.M. Tranell, Formation of copper–neodymium intermetallic compounds by carbothermic reduction of neodymium oxide in the presence of copper, Ind. Eng. Chem. Res., 57(2018), No. 40, p. 13566. doi: 10.1021/acs.iecr.8b03117
|
[10] |
K. Kinoshita, T. Koyama, T. Inoue, M. Ougier, and J.-P. Glatz, Separation of actinides from rare earth elements by means of molten salt electrorefining with anodic dissolution of U–Pu–Zr alloy fuel, J. Phys. Chem. Solids, 66(2005), No. 2-4, p. 619. doi: 10.1016/j.jpcs.2004.06.069
|
[11] |
R. Meier, P. Souček, R. Malmbeck, M. Krachler, A. Rodrigues, B. Claux, J.-P. Glatz, and Th. Fanghänel, Zirconium behaviour during electrorefining of actinide–zirconium alloy in molten LiCl–KCl on aluminium cathodes, J. Nucl. Mater., 472(2016), p. 99. doi: 10.1016/j.jnucmat.2016.01.033
|
[12] |
T. Kato, T. Inoue, T. Iwai, and Y. Arai, Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode, J. Nucl. Mater., 357(2006), No. 1-3, p. 105. doi: 10.1016/j.jnucmat.2006.06.003
|
[13] |
V. Smolenski, A. Novoselova, A. Osipenko, M. Kormilitsyn, and Y. Luk’yanova, Thermodynamics of separation of uranium from neodymium between the gallium–indium liquid alloy and the LiCl–KCl molten salt phases, Electrochim. Acta, 133(2014), p. 354. doi: 10.1016/j.electacta.2014.04.042
|
[14] |
A. Novoselova and V. Smolenski, Electrochemical behavior of neodymium compounds in molten chlorides, Electrochim. Acta, 87(2013), p. 657. doi: 10.1016/j.electacta.2012.09.064
|
[15] |
M.D. Taylor and C.P. Carter, Preparation of anhydrous lanthanide halide, sespecially iodides, J. Inorg. Nucl. Chem., 24(1962), No. 4, p. 387. doi: 10.1016/0022-1902(62)80034-7
|
[16] |
K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochemical formation of Nd–Ni alloys in molten NaCl–KCl–NdCl3, Electrochim. Acta, 92(2013), p. 349. doi: 10.1016/j.electacta.2013.01.049
|
[17] |
H.D. Jiao, J.X. Wang, L. Zhang, K. Zhang, and S.Q. Jiao, Electrochemically depositing titanium(III) ions at liquid tin in a NaCl–KCl melt, RSC Adv., 5(2015), No. 76, p. 62235. doi: 10.1039/C5RA08909C
|
[18] |
Z.S. Hua, H. Liu, J. Wang, J.W. He, S.J. Xiao, Y.P. Xiao, and Y.X. Yang, Electrochemical behavior of neodymium and formation of Mg–Nd alloys in molten chlorides, ACS. Sustainable Chem. Eng., 5(2017), No. 9, p. 8089. doi: 10.1021/acssuschemeng.7b01708
|
[19] |
L. Xu, Y.P. Xiao, Q. Xu, A. van Sandwijk, J.D. Li, Z. Zhao, Q.S. Song, and Y.X. Yang, Electrochemical behavior of zirconium in molten LiF–KF–ZrF4 at 600°C, RSC Adv., 6(2016), No. 87, p. 84472. doi: 10.1039/C6RA17102H
|
[20] |
Z. Chen, C.F. She, H.Y. Zheng, W. Huang, T.J. Zhu, F. Jiang, Y. Gong, and Q.N. Li, Electrochemical deposition of neodymium in LiF–CaF2 from Nd2O3 assisted by AlF3, Electrochim. Acta, 261(2018), p. 289. doi: 10.1016/j.electacta.2017.12.147
|
[21] |
D.H. Chen, S.H. Yan, Z.A. Li, Z.Q. Wang, S.M. Pang, X.S. Wang, and L.H. Xu, Liquid-cathode cell for neodymium electrolysis in NdF3–LiF–Nd2O3 molten, J. Chin. Rare Earth Soc., 27(2009), No. 2, p. 302.
|