Yu.G. Chabak, K. Shimizu, V.G. Efremenko, M.A. Golinskyi, K. Kusumoto, V.I. Zurnadzhy, and A.V. Efremenko, Microstructure and phase elemental distribution in high-boron multi-component cast irons, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 78-87. https://doi.org/10.1007/s12613-020-2135-8
Cite this article as:
Yu.G. Chabak, K. Shimizu, V.G. Efremenko, M.A. Golinskyi, K. Kusumoto, V.I. Zurnadzhy, and A.V. Efremenko, Microstructure and phase elemental distribution in high-boron multi-component cast irons, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 78-87. https://doi.org/10.1007/s12613-020-2135-8
Research Article

Microstructure and phase elemental distribution in high-boron multi-component cast irons

+ Author Affiliations
  • Corresponding author:

    V.G. Efremenko    E-mail: vgefremenko@gmail.com

  • Received: 25 May 2020Revised: 5 July 2020Accepted: 7 July 2020Available online: 9 July 2020
  • The novel cast irons of chemical composition (wt%) 0.7C–5W–5Mo–5V–10Cr–2.5Ti were invented with the additions of 1.6wt% B and 2.7wt% B. The aim of this work was to study the effect of boron on the structural state of the alloys and phase elemental distribution with respect to the formation of wear-resistant structural constituents. It was found that the alloy containing 1.6wt% B was composed of three eutectics: (a) “M2(C,B)5+ferrite” having a “Chinese Script” morphology (89.8vol%), (b) “M7(C,B)3+Austenite” having a “Rosette” morphology, and (c) “M3C+Austenite” having a “Ledeburite”-shaped morphology (2.7vol%). With 2.7wt% of boron content, the bulk hardness increased from HRC 31 to HRC 38.5. The primary carboborides M2(C,B)5 with average microhardness of HV 2797 appeared in the structure with a volume fraction of 17.6vol%. The volume fraction of eutectics (a) and (b, c) decreased to 71.2vol% and 3.9vol%, respectively. The matrix was “ferrite/austenite” for 1.6wt% B and “ferrite/pearlite” for 2.7wt% B. Both cast irons contained compact precipitates of carbide (Ti,M)C and carboboride (Ti,M)(C,В) with a volume fraction of 7.3%–7.5%. Based on the energy-dispersive X-ray spectroscopy, the elemental phase distributions and the appropriate phase formulas are presented in this work.

  • loading
  • [1]
    O.P. Ostash, V.V. Kulyk, V.D. Poznyakov, O.A. Haivorons’kyi, L.I. Markashova, V.V. Vira, Z.A. Duriagina, and T.L. Tepla, Fatigue crack growth resistance of welded joints simulating the weld-repaired railway wheels metal, Arch. Mater. Sci. Eng., 2(2017), No. 86, p. 49. doi: 10.5604/01.3001.0010.4885
    [2]
    A.M. Dubey, A. Kumar, and A.K. Yadav, Wear behaviour of friction stir weld joint of cast Al (4%–10%) Cu alloy welded at different operating parameters, J. Mater. Process. Technol., 240(2017), p. 87. doi: 10.1016/j.jmatprotec.2016.09.003
    [3]
    A. Anishchenko, V. Kukhar, V. Artiukh, and O. Arkhipova, Application of G. Lame’s and J. Gielis’ formulas for description of shells superplastic forming, MATEC Web Conf., 239(2018), art. No. 06007. doi: 10.1051/matecconf/201823906007
    [4]
    V.G. Efremenko, V.I. Zurnadzhi, Y.G. Chabak, O.V. Tsvetkova, and A.V. Dzherenova, Application of the Q-n-P-treatment for increasing the wear resistance of low-alloy steel with 0.75% C, Mater. Sci., 53(2017), No. 1, p. 67. doi: 10.1007/s11003-017-0045-3
    [5]
    A. Gonzalez-Pociño, F. Alvarez-Antolin, and J. Asensio-Lozano, Erosive wear resistance regarding different destabilization heat treatments of austenite in high chromium white cast iron, alloyed with Mo, Metals, 9(2019), No. 5, art. No. 522. doi: 10.3390/met9050522
    [6]
    V.G. Efremenko, Y.G. Chabak, K. Shimizu, A.G. Lekatou, V.I. Zurnadzhy, A.E. Karantzalis, H. Halfa, V.A. Mazur, and B.V. Efremenko, Structure refinement of high-Cr cast iron by plasma surface melting and post-heat treatment, Mater. Des., 126(2017), p. 278. doi: 10.1016/j.matdes.2017.04.022
    [7]
    A. Bedolla-Jacuinde, F. Guerra, I. Mejia, and U. Vera, Niobium additions to a 15%Cr–3%C white iron and its effects on the microstructure and on abrasive wear behavior, Metals, 9(2019), No. 12, art. No. 1321. doi: 10.3390/met9121321
    [8]
    Y. Matsubara, N. Sasaguri, K. Shimizu, and S. K. Yu, Solidification and abrasion wear of white cast irons alloyed with 20% carbide forming elements, Wear, 250(2001), No. 1-12, p. 502. doi: 10.1016/S0043-1648(01)00599-3
    [9]
    M. Hashimoto, O. Kubo, and Y. Matsubara, Analysis of carbides in multi-component white cast iron for hot rolling mill rolls, ISIJ Int., 44(2004), No. 2, p. 372. doi: 10.2355/isijinternational.44.372
    [10]
    Y. Yokomizo, N. Sasaguri, K. Nanjo, and Y. Matsubara, Continuous cooling transformation behavior of multi-component white cast iron, J. Jpn. Foundry Eng. Soc., 74(2002), No. 1, p. 9.
    [11]
    J. Opapaiboon, M.S.N. Ayudhaya, P. Sricharoenchai, S. Inthidech, and Y. Matsubara, Effect of chromium content on heat treatment behavior of multi-alloyed white cast iron for abrasive wear resistance, Mater. Trans., 60(2019), No. 2, p. 346. doi: 10.2320/matertrans.M2018318
    [12]
    T. Meebupha, S. Inthidec, P. Sricharoenchai, and Y. Matsubara, Effect of molybdenum content on heat treatment behavior of multi-alloyed white cast iron, Mater. Trans., 58(2017), No. 4, p. 655. doi: 10.2320/matertrans.M2016396
    [13]
    S. Inthidech and Y. Matsubara, Effects of carbon balance and heat treatment on hardness and volume fraction of retained austenite of semi-multi-alloyed white cast iron, Int. J. Metalcast., 14(2020), No. 1, p. 132. doi: 10.1007/s40962-019-00343-y
    [14]
    Y. Zhang, K. Shimizu, K. Kusumoto, H. Hara, and C. Higuchi, Influence of Ni addition on erosive wear characteristics of multi-component white cast iron at elevated temperature, Wear, 376-377(2017), p. 452. doi: 10.1016/j.wear.2016.12.044
    [15]
    V.G. Efremenko, K. Shimizu, A.P. Cheiliakh, T.V. Kozarevs’ka, Y.G. Chabak, H. Hara, and K. Kusumoto, Abrasive wear resistance of spheroidal vanadium carbide cast irons, J. Frict. Wear, 34(2013), No. 6, p. 466. doi: 10.3103/S1068366613060068
    [16]
    Y. Zhang, K. Shimizu, X.B. Yaer, K. Kusumoto, and V.G. Efremenko, Erosive wear performance of heat treated multi-component cast iron containing Cr, V, Mn and Ni eroded by alumina spheres at elevated temperatures, Wear, 390-391(2017), p. 135. doi: 10.1016/j.wear.2017.07.017
    [17]
    S. Ma and J. Zhang, Wear resistant high boron cast alloy—A review, Rev. Adv. Mater. Sci., 44(2016), p. 54.
    [18]
    P. Christodoulou and N. Calos, A step towards designing Fe–Cr–B–C cast alloys, Mater. Sci. Eng. A, 301(2001), No. 2, p. 103. doi: 10.1016/S0921-5093(00)01808-6
    [19]
    Y.X. Li, Z.L. Liu, and X. Chen, Development of boron white cast iron, Int. J. Cast Met. Res., 21(2008), No. 1-4, p. 67. doi: 10.1179/136404608X361684
    [20]
    H.K. Zeytin, H. Yildirim, B. Berme, S. Duduoĝlu, G. Kazdal, and A. Deniz, Effect of boron and heat treatment on mechanical properties of white cast iron for mining application, J. Iron Steel Res. Int., 18(2011), No. 11, p. 31. doi: 10.1016/S1006-706X(11)60114-3
    [21]
    I. Spiridonova, O. Sukhova, and O. Vashchenko, Multicomponent diffusion processes in boride-containing composite materials, Metall. Nov. Tekhnol., 21(1999), No.2, p. 122.
    [22]
    J.J. Zhang, J.C. Liu, H.M. Liao, M. Zeng, and S.D. Ma, A review on relationship between morphology of boride of Fe–B alloys and the wear/corrosion resistant properties and mechanisms, J. Mater. Res. Technol., 8(2019), No. 6, p. 6308. doi: 10.1016/j.jmrt.2019.09.004
    [23]
    Y.Z. Sun, J.B. Li, D. Wellburn, and C.S. Liu, Fabrication of wear-resistant layers with lamellar eutectic structure by laser surface alloying using the in situ reaction between Cr and B4C, Int. J. Miner. Metall. Mater., 23(2016), No. 11, p. 1294. doi: 10.1007/s12613-016-1351-8
    [24]
    Z.G. Chen, S. Miao, L.N. Kong, X. Wei, F.H. Zhang, and H.B. Yu, Effect of Mo concentration on the microstructure evolution and properties of high boron cast steel, Materials, 13(2020), No. 4, art. No. 975. doi: 10.3390/ma13040975
    [25]
    Y.X. Jian, Z.F. Huang, J.D. Xing, X.T. Liu, L. Sun, B.C. Zheng, and Y. Wang, Investigation on two-body abrasive wear behavior and mechanism of Fe–3.0wt%B cast alloy with different chromium content, Wear, 362-363(2016), p. 68. doi: 10.1016/j.wear.2016.04.029
    [26]
    C.L. Zhang, S.H. Li, Y.H. Lin, J. Ju, and H.G. Fu, Effect of boron on microstructure evolution and properties of wear-resistant cast Fe–Si–Mn–Cr–B alloy, J. Mater. Res. Technol., 9(2020), No. 3, p. 5564. doi: 10.1016/j.jmrt.2020.03.081
    [27]
    G.J. Cui, Z.W. Yang, W.J. Wang, and G.J. Gao, Tribological properties of Fe(Cr)–B alloys at high temperature, J. Cent. South Univ., 26(2019), No. 10, p. 2643. doi: 10.1007/s11771-019-4201-9
    [28]
    V.G. Efremenko, Y.G. Chabak, A. Lekatou, A.E. Karantzalis, and A.V. Efremenko, High-temperature oxidation and decarburization of 14.55 wtpct Cr-cast iron in dry air atmosphere, Metall. Mater. Trans. A, 47(2016), No. 4, p. 1529. doi: 10.1007/s11661-016-3336-7
    [29]
    B.J. Kim, S.S. Jung, J.H. Hwang, Y.H. Park, and Y.C. Lee, Effect of eutectic Mg2Si phase modification on the mechanical properties of Al–8Zn–6Si–4Mg–2Cu cast alloy, Metals, 9(2019), No. 1, art. No. 32. doi: 10.3390/met9010032
    [30]
    E. Georgatis, A. Lekatou, A.E. Karantzalis, H. Petropoulos, S. Katsamakis, and A. Poulia, Development of a cast Al–Mg2Si–Si in situ composite: Microstructure, heat treatment, and mechanical properties, J. Mater. Eng. Perform., 22(2013), No. 3, p. 729. doi: 10.1007/s11665-012-0337-6
    [31]
    V. Efremenko, K. Shimizu, T. Pastukhova, Y. Chabak, M. Brykov, K. Kusumoto, and A. Efremenko, Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents, Int. J. Mater. Res., 109(2018), No. 2, p. 147. doi: 10.3139/146.111583
    [32]
    M. Trepczyńska-Łent and E. Olejnik, Solidification front of oriented ledeburite, Arch. Foundry Eng., 16(2016), No. 1, p. 124. doi: 10.1515/afe-2016-0015
    [33]
    T. Kowoll, E. Müller, S. Fritsch-Decker, S. Hettler, H. Störmer, C. Weiss, and D. Gerthsen, Contrast of backscattered electron SEM images of nanoparticles on substrates with complex structure, Scanning, 2017(2017), art. No. 4907457. doi: 10.1155/2017/4907457
    [34]
    M. Aksoy, O. Yilmaz, and M.H. Korkut, The effect of strong carbide-forming elements on the adhesive wear resistance of ferritic stainless steel, Wear, 249(2001), No. 8, p. 639. doi: 10.1016/S0043-1648(01)00686-X
    [35]
    A. Nino, K. Takahashi, S. Sugiyama, and H. Taimatsu, Effects of carbon addition on microstructures and mechanical properties of binderless tungsten carbide, Mater. Trans., 53(2012), No. 8, p. 1475. doi: 10.2320/matertrans.M2012148
    [36]
    H.O. Pierson, Handbook of Refractory Carbides &Nitrides: Properties, Characteristics,Processing and Applications, Noyes Publications, Westwood, 1996.
    [37]
    V.I. Zurnadzhy, V.G. Efremenko, K.M. Wu, A.Y. Azarkhov, Y.G. Chabak, V.L. Greshta, O.B. Isayev, and M.V. Pomazkov, Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel, Mater. Sci. Eng. A, 745(2019), p. 307. doi: 10.1016/j.msea.2018.12.106
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(3308) PDF Downloads(77) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return