Yu.G. Chabak, K. Shimizu, V.G. Efremenko, M.A. Golinskyi, K. Kusumoto, V.I. Zurnadzhy, and A.V. Efremenko, Microstructure and phase elemental distribution in high-boron multi-component cast irons, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 78-87. https://doi.org/10.1007/s12613-020-2135-8
Cite this article as:
Yu.G. Chabak, K. Shimizu, V.G. Efremenko, M.A. Golinskyi, K. Kusumoto, V.I. Zurnadzhy, and A.V. Efremenko, Microstructure and phase elemental distribution in high-boron multi-component cast irons, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 78-87. https://doi.org/10.1007/s12613-020-2135-8
Research Article

Microstructure and phase elemental distribution in high-boron multi-component cast irons

+ Author Affiliations
  • Corresponding author:

    V.G. Efremenko    E-mail: vgefremenko@gmail.com

  • Received: 25 May 2020Revised: 5 July 2020Accepted: 7 July 2020Available online: 9 July 2020
  • The novel cast irons of chemical composition (wt%) 0.7C–5W–5Mo–5V–10Cr–2.5Ti were invented with the additions of 1.6wt% B and 2.7wt% B. The aim of this work was to study the effect of boron on the structural state of the alloys and phase elemental distribution with respect to the formation of wear-resistant structural constituents. It was found that the alloy containing 1.6wt% B was composed of three eutectics: (a) “M2(C,B)5+ferrite” having a “Chinese Script” morphology (89.8vol%), (b) “M7(C,B)3+Austenite” having a “Rosette” morphology, and (c) “M3C+Austenite” having a “Ledeburite”-shaped morphology (2.7vol%). With 2.7wt% of boron content, the bulk hardness increased from HRC 31 to HRC 38.5. The primary carboborides M2(C,B)5 with average microhardness of HV 2797 appeared in the structure with a volume fraction of 17.6vol%. The volume fraction of eutectics (a) and (b, c) decreased to 71.2vol% and 3.9vol%, respectively. The matrix was “ferrite/austenite” for 1.6wt% B and “ferrite/pearlite” for 2.7wt% B. Both cast irons contained compact precipitates of carbide (Ti,M)C and carboboride (Ti,M)(C,В) with a volume fraction of 7.3%–7.5%. Based on the energy-dispersive X-ray spectroscopy, the elemental phase distributions and the appropriate phase formulas are presented in this work.

  • loading
  • [1]
    O.P. Ostash, V.V. Kulyk, V.D. Poznyakov, O.A. Haivorons’kyi, L.I. Markashova, V.V. Vira, Z.A. Duriagina, and T.L. Tepla, Fatigue crack growth resistance of welded joints simulating the weld-repaired railway wheels metal, Arch. Mater. Sci. Eng., 2(2017), No. 86, p. 49. doi: 10.5604/01.3001.0010.4885
    A.M. Dubey, A. Kumar, and A.K. Yadav, Wear behaviour of friction stir weld joint of cast Al (4%–10%) Cu alloy welded at different operating parameters, J. Mater. Process. Technol., 240(2017), p. 87. doi: 10.1016/j.jmatprotec.2016.09.003
    A. Anishchenko, V. Kukhar, V. Artiukh, and O. Arkhipova, Application of G. Lame’s and J. Gielis’ formulas for description of shells superplastic forming, MATEC Web Conf., 239(2018), art. No. 06007. doi: 10.1051/matecconf/201823906007
    V.G. Efremenko, V.I. Zurnadzhi, Y.G. Chabak, O.V. Tsvetkova, and A.V. Dzherenova, Application of the Q-n-P-treatment for increasing the wear resistance of low-alloy steel with 0.75% C, Mater. Sci., 53(2017), No. 1, p. 67. doi: 10.1007/s11003-017-0045-3
    A. Gonzalez-Pociño, F. Alvarez-Antolin, and J. Asensio-Lozano, Erosive wear resistance regarding different destabilization heat treatments of austenite in high chromium white cast iron, alloyed with Mo, Metals, 9(2019), No. 5, art. No. 522. doi: 10.3390/met9050522
    V.G. Efremenko, Y.G. Chabak, K. Shimizu, A.G. Lekatou, V.I. Zurnadzhy, A.E. Karantzalis, H. Halfa, V.A. Mazur, and B.V. Efremenko, Structure refinement of high-Cr cast iron by plasma surface melting and post-heat treatment, Mater. Des., 126(2017), p. 278. doi: 10.1016/j.matdes.2017.04.022
    A. Bedolla-Jacuinde, F. Guerra, I. Mejia, and U. Vera, Niobium additions to a 15%Cr–3%C white iron and its effects on the microstructure and on abrasive wear behavior, Metals, 9(2019), No. 12, art. No. 1321. doi: 10.3390/met9121321
    Y. Matsubara, N. Sasaguri, K. Shimizu, and S. K. Yu, Solidification and abrasion wear of white cast irons alloyed with 20% carbide forming elements, Wear, 250(2001), No. 1-12, p. 502. doi: 10.1016/S0043-1648(01)00599-3
    M. Hashimoto, O. Kubo, and Y. Matsubara, Analysis of carbides in multi-component white cast iron for hot rolling mill rolls, ISIJ Int., 44(2004), No. 2, p. 372. doi: 10.2355/isijinternational.44.372
    Y. Yokomizo, N. Sasaguri, K. Nanjo, and Y. Matsubara, Continuous cooling transformation behavior of multi-component white cast iron, J. Jpn. Foundry Eng. Soc., 74(2002), No. 1, p. 9.
    J. Opapaiboon, M.S.N. Ayudhaya, P. Sricharoenchai, S. Inthidech, and Y. Matsubara, Effect of chromium content on heat treatment behavior of multi-alloyed white cast iron for abrasive wear resistance, Mater. Trans., 60(2019), No. 2, p. 346. doi: 10.2320/matertrans.M2018318
    T. Meebupha, S. Inthidec, P. Sricharoenchai, and Y. Matsubara, Effect of molybdenum content on heat treatment behavior of multi-alloyed white cast iron, Mater. Trans., 58(2017), No. 4, p. 655. doi: 10.2320/matertrans.M2016396
    S. Inthidech and Y. Matsubara, Effects of carbon balance and heat treatment on hardness and volume fraction of retained austenite of semi-multi-alloyed white cast iron, Int. J. Metalcast., 14(2020), No. 1, p. 132. doi: 10.1007/s40962-019-00343-y
    Y. Zhang, K. Shimizu, K. Kusumoto, H. Hara, and C. Higuchi, Influence of Ni addition on erosive wear characteristics of multi-component white cast iron at elevated temperature, Wear, 376-377(2017), p. 452. doi: 10.1016/j.wear.2016.12.044
    V.G. Efremenko, K. Shimizu, A.P. Cheiliakh, T.V. Kozarevs’ka, Y.G. Chabak, H. Hara, and K. Kusumoto, Abrasive wear resistance of spheroidal vanadium carbide cast irons, J. Frict. Wear, 34(2013), No. 6, p. 466. doi: 10.3103/S1068366613060068
    Y. Zhang, K. Shimizu, X.B. Yaer, K. Kusumoto, and V.G. Efremenko, Erosive wear performance of heat treated multi-component cast iron containing Cr, V, Mn and Ni eroded by alumina spheres at elevated temperatures, Wear, 390-391(2017), p. 135. doi: 10.1016/j.wear.2017.07.017
    S. Ma and J. Zhang, Wear resistant high boron cast alloy—A review, Rev. Adv. Mater. Sci., 44(2016), p. 54.
    P. Christodoulou and N. Calos, A step towards designing Fe–Cr–B–C cast alloys, Mater. Sci. Eng. A, 301(2001), No. 2, p. 103. doi: 10.1016/S0921-5093(00)01808-6
    Y.X. Li, Z.L. Liu, and X. Chen, Development of boron white cast iron, Int. J. Cast Met. Res., 21(2008), No. 1-4, p. 67. doi: 10.1179/136404608X361684
    H.K. Zeytin, H. Yildirim, B. Berme, S. Duduoĝlu, G. Kazdal, and A. Deniz, Effect of boron and heat treatment on mechanical properties of white cast iron for mining application, J. Iron Steel Res. Int., 18(2011), No. 11, p. 31. doi: 10.1016/S1006-706X(11)60114-3
    I. Spiridonova, O. Sukhova, and O. Vashchenko, Multicomponent diffusion processes in boride-containing composite materials, Metall. Nov. Tekhnol., 21(1999), No.2, p. 122.
    J.J. Zhang, J.C. Liu, H.M. Liao, M. Zeng, and S.D. Ma, A review on relationship between morphology of boride of Fe–B alloys and the wear/corrosion resistant properties and mechanisms, J. Mater. Res. Technol., 8(2019), No. 6, p. 6308. doi: 10.1016/j.jmrt.2019.09.004
    Y.Z. Sun, J.B. Li, D. Wellburn, and C.S. Liu, Fabrication of wear-resistant layers with lamellar eutectic structure by laser surface alloying using the in situ reaction between Cr and B4C, Int. J. Miner. Metall. Mater., 23(2016), No. 11, p. 1294. doi: 10.1007/s12613-016-1351-8
    Z.G. Chen, S. Miao, L.N. Kong, X. Wei, F.H. Zhang, and H.B. Yu, Effect of Mo concentration on the microstructure evolution and properties of high boron cast steel, Materials, 13(2020), No. 4, art. No. 975. doi: 10.3390/ma13040975
    Y.X. Jian, Z.F. Huang, J.D. Xing, X.T. Liu, L. Sun, B.C. Zheng, and Y. Wang, Investigation on two-body abrasive wear behavior and mechanism of Fe–3.0wt%B cast alloy with different chromium content, Wear, 362-363(2016), p. 68. doi: 10.1016/j.wear.2016.04.029
    C.L. Zhang, S.H. Li, Y.H. Lin, J. Ju, and H.G. Fu, Effect of boron on microstructure evolution and properties of wear-resistant cast Fe–Si–Mn–Cr–B alloy, J. Mater. Res. Technol., 9(2020), No. 3, p. 5564. doi: 10.1016/j.jmrt.2020.03.081
    G.J. Cui, Z.W. Yang, W.J. Wang, and G.J. Gao, Tribological properties of Fe(Cr)–B alloys at high temperature, J. Cent. South Univ., 26(2019), No. 10, p. 2643. doi: 10.1007/s11771-019-4201-9
    V.G. Efremenko, Y.G. Chabak, A. Lekatou, A.E. Karantzalis, and A.V. Efremenko, High-temperature oxidation and decarburization of 14.55 wtpct Cr-cast iron in dry air atmosphere, Metall. Mater. Trans. A, 47(2016), No. 4, p. 1529. doi: 10.1007/s11661-016-3336-7
    B.J. Kim, S.S. Jung, J.H. Hwang, Y.H. Park, and Y.C. Lee, Effect of eutectic Mg2Si phase modification on the mechanical properties of Al–8Zn–6Si–4Mg–2Cu cast alloy, Metals, 9(2019), No. 1, art. No. 32. doi: 10.3390/met9010032
    E. Georgatis, A. Lekatou, A.E. Karantzalis, H. Petropoulos, S. Katsamakis, and A. Poulia, Development of a cast Al–Mg2Si–Si in situ composite: Microstructure, heat treatment, and mechanical properties, J. Mater. Eng. Perform., 22(2013), No. 3, p. 729. doi: 10.1007/s11665-012-0337-6
    V. Efremenko, K. Shimizu, T. Pastukhova, Y. Chabak, M. Brykov, K. Kusumoto, and A. Efremenko, Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents, Int. J. Mater. Res., 109(2018), No. 2, p. 147. doi: 10.3139/146.111583
    M. Trepczyńska-Łent and E. Olejnik, Solidification front of oriented ledeburite, Arch. Foundry Eng., 16(2016), No. 1, p. 124. doi: 10.1515/afe-2016-0015
    T. Kowoll, E. Müller, S. Fritsch-Decker, S. Hettler, H. Störmer, C. Weiss, and D. Gerthsen, Contrast of backscattered electron SEM images of nanoparticles on substrates with complex structure, Scanning, 2017(2017), art. No. 4907457. doi: 10.1155/2017/4907457
    M. Aksoy, O. Yilmaz, and M.H. Korkut, The effect of strong carbide-forming elements on the adhesive wear resistance of ferritic stainless steel, Wear, 249(2001), No. 8, p. 639. doi: 10.1016/S0043-1648(01)00686-X
    A. Nino, K. Takahashi, S. Sugiyama, and H. Taimatsu, Effects of carbon addition on microstructures and mechanical properties of binderless tungsten carbide, Mater. Trans., 53(2012), No. 8, p. 1475. doi: 10.2320/matertrans.M2012148
    H.O. Pierson, Handbook of Refractory Carbides &Nitrides: Properties, Characteristics,Processing and Applications, Noyes Publications, Westwood, 1996.
    V.I. Zurnadzhy, V.G. Efremenko, K.M. Wu, A.Y. Azarkhov, Y.G. Chabak, V.L. Greshta, O.B. Isayev, and M.V. Pomazkov, Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel, Mater. Sci. Eng. A, 745(2019), p. 307. doi: 10.1016/j.msea.2018.12.106
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(3308) PDF Downloads(77) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint