Growth mechanism and photocatalytic evaluation of flower-like ZnO microstructures prepared with SDBS assistance
-
Graphical Abstract
-
Abstract
Flower-like ZnO microstructures were successfully produced using a hydrothermal method employing ZnSO4/(NH4)2SO4 as a raw material. The effect of the operating parameters of the hydrothermal temperature, OH−/Zn2+ molar ratio, time, and amount of dispersant on the phase structure and micromorphology of the ZnO particles were investigated. The synthesis conditions of the flower-like ZnO microstructures were: hydrothermal temperature of 160°C, OH−/Zn2+ molar ratio of 5:1, reaction time of 4 h, and 4 mL of dispersant. The flower-like ZnO microstructures were comprised of hexagon-shaped ZnO rods arranged in a radiatively. Degradation experiments of Rhodamine B with the flower-like ZnO microstructures demonstrated a degradation efficiency of 97.6% after 4 h of exposure to sunshine, indicating excellent photocatalytic capacity. The growth mechanism of the flower-like ZnO microstructures was presented.
-
-