Cite this article as: |
Muhammad Arslan Hafeez, Ameeq Farooq, Kaab Bin Tayyab, and Muhammad Adnan Arshad, Effect of thermomechanical cyclic quenching and tempering treatments on microstructure, mechanical and electrochemical properties of AISI 1345 steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 688-698. https://doi.org/10.1007/s12613-020-2139-4 |
Ameeq Farooq E-mail: ameeq.farooq@gmail.com
Thermomechanical cyclic quenching and tempering (TMCT) can strengthen steels through a grain size reduction mechanism. The effect of TMCT on microstructure, mechanical, and electrochemical properties of AISI 1345 steel was investigated. Steel samples heated to 1050°C, rolled, quenched to room temperature, and subjected to various cyclic quenching and tempering heat treatments were named TMCT-1, TMCT-2, and TMCT-3 samples, respectively. Microstructure analysis revealed that microstructures of all the treated samples contained packets and blocks of well-refined lath-shaped martensite and retained austenite phases with varying grain sizes (2.8–7.9 μm). Among all the tested samples, TMCT-3 sample offered an optimum combination of properties by showing an improvement of 40% in tensile strength and reduced 34% elongation compared with the non-treated sample. Nanoindentation results were in good agreement with mechanical tests as the TMCT-3 sample exhibited a 51% improvement in indentation hardness with almost identical reduced elastic modulus compared with the non-treated sample. The electrochemical properties were analyzed in 0.1 M NaHCO3 solution by potentiodynamic polarization and electrochemical impedance spectroscopy. As a result of TMCT, the minimum corrosion rate was 0.272 mm/a, which was twenty times less than that of the non-treated sample. The impedance results showed the barrier film mechanism, which was confirmed by the polarization results as the current density decreased.
[1] |
Y. Tomita, Development of fracture toughness of ultrahigh strength, medium carbon, low alloy steels for aerospace applications, Int. Mater. Rev., 45(2000), No. 1, p. 27. doi: 10.1179/095066000771048791
|
[2] |
Y. Tomita and K. Okabayashi, Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels, Metall. Trans. A, 16(1985), No. 1, p. 83. doi: 10.1007/BF02656715
|
[3] |
Y.Q. Weng, Ultra-Fine Grained Steels, Metallurgical Industry Press, Beijing and Springer, Berlin, Heidelberg, 2009, p. 300.
|
[4] |
S. Kim, S. Lee, and B.S. Lee, Effects of grain size on fracture toughness in transition temperature region of Mn–Mo–Ni low-alloy steels, Mater. Sci. Eng. A, 359(2003), No. 1-2, p. 198. doi: 10.1016/S0921-5093(03)00344-7
|
[5] |
M. Eskandari, A. Kermanpur, and A. Najafizadeh, Formation of nano-grained structure in a 301 stainless steel using a repetitive thermo-mechanical treatment, Mater. Lett., 63(2009), No. 16, p. 1442. doi: 10.1016/j.matlet.2009.03.043
|
[6] |
P. Prakash, J. Vanaja, N. Srinivasan, P. Parameswaran, G.V.S.N. Rao, and K. Laha, Effect of thermo-mechanical treatment on tensile properties of reduced activation ferritic-martensitic steel, Mater. Sci. Eng. A, 724(2018), p. 171. doi: 10.1016/j.msea.2018.03.080
|
[7] |
S.Z. Li, Z. Eliniyaz, F. Sun, Y.Z. Shen, L.T. Zhang, and A.D. Shan, Effect of thermo-mechanical treatment on microstructure and mechanical properties of P92 heat resistant steel, Mater. Sci. Eng. A, 559(2013), p. 882. doi: 10.1016/j.msea.2012.09.040
|
[8] |
H. Oka, T. Tanno, S. Ohtsuka, Y. Yano, T. Uwaba, T. Kaito, and M. Ohnuma, Effect of thermo-mechanical treatments on nano-structure of 9Cr-ODS steel, Nucl. Mater. Energy, 9(2016), p. 346. doi: 10.1016/j.nme.2016.10.007
|
[9] |
C.Y. Lee, C.S. Yoo, A. Kermanpur, and Y.K. Lee, The effects of multi-cyclic thermo-mechanical treatment on the grain refinement and tensile properties of a metastable austenitic steel, J. Alloys Compd., 583(2014), p. 357. doi: 10.1016/j.jallcom.2013.08.161
|
[10] |
J. Liu, H. Yu, T. Zhou, C.H. Song, and K. Zhang, Effect of double quenching and tempering heat treatment on the microstructure and mechanical properties of a novel 5Cr steel processed by electro-slag casting, Mater. Sci. Eng. A, 619(2014), p. 212. doi: 10.1016/j.msea.2014.09.063
|
[11] |
P. Prakash, J. Vanaja, D.P.R. Palaparti, G.V.P. Reddy, K. Laha, and G.V.S.N. Rao, Tensile flow and work hardening behavior of reduced activation ferritic martensitic steel subjected to thermo-mechanical treatment, J. Nucl. Mater., 520(2019), p. 19. doi: 10.1016/j.jnucmat.2019.04.009
|
[12] |
M.H.K. Sanij, S.S.G. Banadkouki, A.R. Mashreghi, and M. Moshrefifar, The effect of single and double quenching and tempering heat treatments on the microstructure and mechanical properties of AISI 4140 steel, Mater. Des., 42(2012), p. 339. doi: 10.1016/j.matdes.2012.06.017
|
[13] |
P. Ganesh, A.V. Kumar, C. Thinaharan, N.G. Krishna, R.P. George, N. Parvathavarthini, S.K. Rai, R. Kaul, U.K. Mudali, and L.M. Kukreja, Enhancement of intergranular corrosion resistance of type 304 stainless steel through a novel surface thermo-mechanical treatment, Surf. Coat. Technol., 232(2013), p. 920. doi: 10.1016/j.surfcoat.2013.06.124
|
[14] |
A. Ghosh and M. Ghosh, Tensile and impact behaviour of thermo mechanically treated and micro-alloyed medium carbon steel bar, Constr. Build. Mater., 192(2018), p. 657. doi: 10.1016/j.conbuildmat.2018.10.098
|
[15] |
L. Kučerová and M. Bystrianský, Comparison of thermo-mechanical treatment of C–Mn–Si–Nb and C–Mn–Si–Al–Nb TRIP steels, Procedia Eng., 207(2017), p. 1856. doi: 10.1016/j.proeng.2017.10.951
|
[16] |
M.A. Hafeez, A. Inam, and A. Farooq, Mechanical and corrosion properties of medium carbon low alloy steel after cyclic quenching and tempering heat-treatments, Mater. Res. Express, 7(2020), No. 1, art. No. 016553. doi: 10.1088/2053-1591/ab6581
|
[17] |
K.P. Balan, A.V. Reddy, and D.S. Sarma, Effect of single and double austenitization treatments on the microstructure and mechanical properties of 16Cr–2Ni Steel, J. Mater. Eng. Perform., 8(1999), No. 3, p. 385. doi: 10.1361/105994999770346963
|
[18] |
E. Chang, C.Y. Chang, and C.D. Liu, The effects of double austenitization on the mechanical properties of a 0.34C containing low-alloy Ni–Cr–Mo–V steel, Metall. Mater. Trans. A, 25(1994), No. 3, p. 545. doi: 10.1007/BF02651596
|
[19] |
C. Pandey, M.M. Mahapatra, P. Kumar, P. Kumar, N. Saini, J.G. Thakare, and S. Kumar, Study on effect of double austenitization treatment on fracture morphology tensile tested nuclear grade P92 steel, Eng. Fail. Anal., 96(2019), p. 158. doi: 10.1016/j.engfailanal.2018.09.036
|
[20] |
S. Salunkhe, D. Fabijanic, J. Nayak, and P. Hodgson, Effect of single and double austenitization treatments on the microstructure and hardness of AISI D2 tool steel, Mater. Today: Proc., 2(2015), No. 4-5, p. 1901. doi: 10.1016/j.matpr.2015.07.145
|
[21] |
M.A. Hafeez, A. Inam, M.U. Hassan, M.A. Umer, M. Usman, and A. Hanif, Optimized corrosion performance of AISI 1345 steel in hydrochloric acid through thermos-mechanical cyclic annealing processes, Crystals, 10(2020), No. 4, p. 265. doi: 10.3390/cryst10040265
|
[22] |
Z.X. Cao, Z.Y. Shi, F. Yu, K. Sugimoto, W.Q. Cao, and Y.Q. Weng, Effects of double quenching on fatigue properties of high carbon bearing steel with extra-high purity, Int. J. Fatigue, 128(2019), art. No. 105176. doi: 10.1016/j.ijfatigue.2019.06.036
|
[23] |
Y. Zhang, C. Yu, T. Zhou, D.W. Liu, X.W. Fang, H.P. Li, and J.P. Suo, Effects of Ti and a twice-quenching treatment on the microstructure and ductile brittle transition temperature of 9CrWVTiN steels, Mater. Des., 88(2015), p. 675. doi: 10.1016/j.matdes.2015.09.056
|
[24] |
X.S. Xiong, F. Yang, X.R. Zou, and J.P. Suo, Effect of twice quenching and tempering on the mechanical properties and microstructures of SCRAM steel for fusion application, J. Nucl. Mater., 430(2012), No. 1-3, p. 114. doi: 10.1016/j.jnucmat.2012.06.047
|
[25] |
J.G. Gonzalez-Rodriguez, M. Casales, V.M. Salinas-Bravo, J.L. Albarran, and L. Martinez, Effect of microstructure on the stress corrosion cracking of X-80 pipeline steel in diluted sodium bicarbonate solutions, Corrosion, 58(2002), No. 7, p. 584. doi: 10.5006/1.3277649
|
[26] |
M.H. Nazari, S.R. Allahkaram, and M.B. Kermani, The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel, Mater. Des., 31(2010), No. 7, p. 3559. doi: 10.1016/j.matdes.2010.01.038
|
[27] |
S.J. Harjac, A. Atrens, C.J. Moss, and V. Linton, Influence of solution chemistry and surface condition on the critical inhibitor concentration for solutions typical of hot potassium carbonate CO2 removal plant, J. Mater. Sci., 42(2007), No. 18, p. 7762. doi: 10.1007/s10853-007-1613-y
|
[28] |
S. Nešić, Key issues related to modelling of internal corrosion of oil and gas pipelines–A review, Corros. Sci., 49(2007), No. 12, p. 4308. doi: 10.1016/j.corsci.2007.06.006
|
[29] |
F.M. Al-Kharafi, B.G. Ateya, and R.M. Abdallah, Electrochemical behaviour of low carbon steel in concentrated carbonate chloride brines, J. Appl. Electrochem., 32(2002), No. 12, p. 1363. doi: 10.1023/A:1022684930409
|
[30] |
M. Attarchi, M. Mazloumi, S.K. Sadrnezhaad, A. Jafari, and M. Asadi, Formation and rupture of carbonate film: An electrochemical noise approach, Anti-Corros. Methods Mater., 56(2009), No. 2, p. 103.
|
[31] |
S. Simard, H. Menard, and L. Brossard, Localized corrosion of 1024 mild steel in slightly alkaline bicarbonate solution with Cl− ions, J. Appl. Electrochem., 28(1998), No. 2, p. 151.
|
[32] |
S. Simard, M. Odziemkowski, D.E. Irish, L. Brossard, and H. Ménard, In situ micro-Raman spectroscopy to investigate pitting corrosion product of 1024 mild steel in phosphate and bicarbonate solutions containing chloride and sulfate ions, J. Appl. Electrochem., 31(2001), No. 8, p. 913. doi: 10.1023/A:1017517618191
|
[33] |
J.Q. Wang and A. Atrens, SCC initiation for X65 pipeline steel in the “high” pH carbonate/bicarbonate solution, Corros. Sci., 45(2003), No. 10, p. 2199. doi: 10.1016/S0010-938X(03)00044-1
|
[34] |
A.A. Oskuie, T. Shahrabi, A. Shahriari, and E. Saebnoori, Electrochemical impedance spectroscopy analysis of X70 pipeline steel stress corrosion cracking in high pH carbonate solution, Corros. Sci., 61(2012), p. 111. doi: 10.1016/j.corsci.2012.04.024
|
[35] |
F.F. Eliyan, E.S. Mahdi, and A. Alfantazi, Electrochemical evaluation of the corrosion behaviour of API-X100 pipeline steel in aerated bicarbonate solutions, Corros. Sci., 58(2012), p. 181. doi: 10.1016/j.corsci.2012.01.015
|
[36] |
J.B. Han, B.N. Brown, D. Young, and S. Nešić, Mesh-capped probe design for direct pH measurements at an actively corroding metal surface, J. Appl. Electrochem., 40(2010), No. 3, p. 683. doi: 10.1007/s10800-009-0043-8
|
[37] |
A. Farooq, A.A. Alvi, A.M.H. Alvi, K.M. Deen, and A. Tariq, Effect of post weld heat treatment on the electrochemical behavior of API X-65 welded pipeline in bicarbonates solutions, [in] Conference Proceeding: NACE Northern Area Western Conference, Calgary, Alberta, 2019, p. 683.
|
[38] |
A. Inam, Y. Imtiaz, M.A. Hafeez, S. Munir, Z. Ali, M. Ishtiaq, M.H. Hassan, A. Maqbool, and W. Haider, Effect of tempering time on microstructure, mechanical, and electrochemical properties of quenched–partitioned–tempered advanced high strength steel (AHSS), Mater. Res. Express, 6(2019), art. No. 126509. doi: 10.1088/2053-1591/ab52b7
|
[39] |
M.A. Hafeez, Investigation on mechanical properties and immersion corrosion performance of 0.35%C–10.5%Mn steel processed by austenite reverted transformation (ART) annealing process, Metall. Microstruct. Anal., 9(2020), p. 159. doi: 10.1007/s13632-020-00629-2
|
[40] |
C. Liu, Z.B. Zhao, D.O. Northwood, and Y.X. Liu, A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels, J. Mater. Process. Technol., 113(2001), No. 1-3, p. 556. doi: 10.1016/S0924-0136(01)00625-2
|
[41] |
Y.P. Zhang, D.P. Zhan, X.W. Qi, Z.H. Jiang, and H.S. Zhang, Microstructure and mechanical properties of Cr14 ultra-high-strength steel at different tempering temperatures around 773 K, Mater. Sci. Eng. A, 698(2017), p. 152. doi: 10.1016/j.msea.2017.05.060
|
[42] |
W.D. Callister Jr. and D.G. Rethwisch, Material Science and Engineering: An Introduction, 8th ed., John Wiley and Sons, New Jersey, Hoboken, 2009.
|
[43] |
G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-HillBook Co., New York, 1986.
|
[44] |
M.A. Hafeez and A. Farooq, Microstructural, mechanical and tribological investigation of 30CrMnSiNi2A ultra-high strength steel under various tempering temperatures, Mater. Res. Express, 5(2018), No. 1, art. No. 016505. doi: 10.1088/2053-1591/aa9fd3
|
[45] |
M.A. Hafeez, Effect of microstructural transformation during tempering on mechanical properties of quenched and tempered 38CrSi steel, Mater. Res. Express, 6(2019), No. 8, art. No. 086552. doi: 10.1088/2053-1591/ab1db9
|
[46] |
M.A. Hafeez, A. Inam, and M.A. Arshad, Investigation on microstructural, mechanical, and electrochemical properties of water, brine quenched and tempered low carbon steel, Mater. Res. Express, 6(2019), No. 9, art. No. 096524. doi: 10.1088/2053-1591/ab2c7f
|
[47] |
M.A. Hafeez and A. Farooq, Effect of heat treatments on the mechanical and electrochemical behavior of 38CrSi and AISI 4140 steels, Metall. Microstruct. Anal., 8(2019), No. 4, p. 479. doi: 10.1007/s13632-019-00556-x
|
[48] |
M.A. Hafeez and A. Farooq, Effect of quenching baths on microstructure and hardness of AISI1035 steel, Niger. J. Technol. Res., 13(2018), No. 1, p. 82. doi: 10.4314/njtr.v13i1.8
|
[49] |
M.A. Hafeez, M. Usman, M.A. Arshad, and M.A. Umer, Nanoindentation-based micro-mechanical and electrochemical properties of quench-hardened, tempered low-carbon steel, Crystals, 10(2020), No. 6, p. 508. doi: 10.3390/cryst10060508
|
[50] |
B.V.N. Rao and G. Thomas, Structure-property relations and the design of Fe–4Cr–C base structural steels for high strength and toughness, Metall. Trans. A, 11(1980), p. 441. doi: 10.1007/BF02654568
|
[51] |
W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(1992), No. 6, p. 1564. doi: 10.1557/JMR.1992.1564
|
[52] |
G. Guillonneau, G. Kermouche, S. Bec, and J.-L. Loubet, Determination of mechanical properties by nanoindentation independently of indentation depth measurement, J. Mater. Res., 27(2012), No. 19, p. 2551. doi: 10.1557/jmr.2012.261
|
[53] |
L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere, Corros. Sci., 58(2012), p. 175. doi: 10.1016/j.corsci.2012.01.017
|
[54] |
S.I. Hirnyi, Anodic hydrogenation of iron in a carbonate–bicarbonate solution, Mater. Sci., 37(2001), No. 3, p. 491. doi: 10.1023/A:1013218424477
|
[55] |
D.H. Davies and G.T. Burstein, The effects of bicarbonate on the corrosion and passivation of iron, Corrosion, 36(1980), No. 8, p. 416. doi: 10.5006/0010-9312-36.8.416
|