Angga Hermawan, Yusuke Asakura, and Shu Yin, Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp.1560-1567. https://dx.doi.org/10.1007/s12613-020-2143-8
Cite this article as: Angga Hermawan, Yusuke Asakura, and Shu Yin, Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp.1560-1567. https://dx.doi.org/10.1007/s12613-020-2143-8

Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor

  • Hydrogen is a promising renewable energy source for fossil-free transportation and electrical energy generation. However, leaking hydrogen in high-temperature production processes can cause an explosion, which endangers production workers and surrounding areas. To detect leaks early, we used a sensor material based on a wide bandgap aluminum nitride (AlN) that can withstand a high-temperature environment. Three unique AlN morphologies (rod-like, nest-like, and hexagonal plate-like) were synthesized by a direct nitridation method at 1400°C using γ-AlOOH as a precursor. The gas-sensing performance shows that a hexagonal plate-like morphology exhibited p-type sensing behavior and showed good repeatability as well as the highest response (S = 58.7) toward a 750 ppm leak of H2 gas at high temperature (500°C) compared with the rod-like and nest-like morphologies. Furthermore, the hexagonal plate-like morphology showed fast response and recovery times of 40 and 82 s, respectively. The surface facet of the hexagonal morphology of AlN might be energetically favorable for gas adsorption–desorption for enhanced hydrogen detection.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return