Hao-yang Wang, Xue Cheng, Xiao-feng Li, Ji-min Pan,  and Jun-hua Hu, Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 305-316. https://doi.org/10.1007/s12613-020-2145-6
Cite this article as:
Hao-yang Wang, Xue Cheng, Xiao-feng Li, Ji-min Pan,  and Jun-hua Hu, Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 305-316. https://doi.org/10.1007/s12613-020-2145-6
Research ArticleCover Article

Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode

+ Author Affiliations
  • Corresponding author:

    Jun-hua Hu    E-mail: hujh@zzu.edu.cn

  • Received: 25 May 2020Revised: 12 July 2020Accepted: 15 July 2020Available online: 17 July 2020
  • To probe the coupling effect of the electron and Li ion conductivities in Ni-rich layered materials (LiNi0.8Co0.15Al0.05O2, NCA), lithium lanthanum titanate (LLTO) nanofiber and carbon-coated LLTO fiber (LLTO@C) materials were introduced to polyvinylidene difluoride in a cathode. The enhancement of the conductivity was indicated by the suppressed impedance and polarization. At 1 and 5 C, the cathodes with coupling conductive paths had a more stable cycling performance. The coupling mechanism was analyzed based on the chemical state and structure evolution of NCA after cycling for 200 cycles at 5 C. In the pristine cathode, the propagation of lattice damaged regions, which consist of high-density edge-dislocation walls, destroyed the bulk integrity of NCA. In addition, the formation of a rock-salt phase on the surface of NCA caused a capacity loss. In contrast, in the LLTO@C modified cathode, although the formation of dislocation-driven atomic lattice broken regions and cation mixing occurred, they were limited to a scale of several atoms, which retarded the generation of the rock-salt phase and resulted in a pre-eminent capacity retention. Only NiO phase “pitting” occurred. A mechanism based on the synergistic transport of Li ions and electrons was proposed.

  • loading
  • [1]
    L.F. Guo, S.Y. Zhang, J. Xie, D. Zhen, Y. Jin, K.Y. Wan, D.G. Zhuang, W.Q. Zheng, and X.B. Zhao, Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 515. doi: 10.1007/s12613-019-1900-z
    [2]
    D.B. Li, L.Y. Cao, C.D. Liu, G.Q. Cao, J.H. Hu, J.B. Chen, and G.S. Shao, A designer fast Li-ion conductor Li6.25PS5.25Cl0.75 and its contribution to the polyethylene oxide based electrolyte, Appl. Surf. Sci., 493(2019), p. 1326. doi: 10.1016/j.apsusc.2019.07.041
    [3]
    J.B. Goodenough, Electrochemical energy storage in a sustainable modern society, Energy Environ. Sci., 7(2014), No. 1, p. 14. doi: 10.1039/C3EE42613K
    [4]
    Y. Han, S.Y. Liu, L. Cui, L. Xu, J. Xie, X.K. Xia, W.K. Hao, B. Wang, H. Li, and J. Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 88. doi: 10.1007/s12613-018-1550-6
    [5]
    Y.M. Sun, N. Liu, and Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1(2016), No. 7, art. No. 16071. doi: 10.1038/nenergy.2016.71
    [6]
    G.Q. Cao, Y.Y. Ren, K.K. Wu, H.H. Yao, J.H. Hu, G.S. Shao, and G.H. Yuan, Life extension strategy and research progress of zirconium alloy cladding applied to light water reactors, Surf. Technol., 48(2019), No. 11, p. 69.
    [7]
    G.Q. Cao, L. Yang, G.H. Yuan, J.H. Hu, G.S. Shao, and L. Yan, Chemical diversity of iron species and structure evolution during the oxidation of C14 laves phase Zr(Fe,Nb)2 in subcritical environment, Corros. Sci., 162(2020), art. No. 108218. doi: 10.1016/j.corsci.2019.108218
    [8]
    A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO–C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473. doi: 10.1007/s12613-018-1702-8
    [9]
    L.P. Wang, G. Chen, Q.X. Shen, G.M. Li, S.Y. Guan, and B. Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1027. doi: 10.1007/s12613-018-1653-0
    [10]
    N.V. Faenza, N. Pereira, D.M. Halat, J. Vinckeviciute, L. Bruce, M.D. Radin, P. Mukherjee, F. Badway, A. Halajko, F. Cosandey, C.P. Grey, A. Van der Ven, and G.G. Amatucci, Phase evolution and degradation modes of R3-m LixNi1−yzCoyAlzO2 electrodes cycled near complete delithiation, Chem. Mater., 30(2018), No. 21, p. 7545. doi: 10.1021/acs.chemmater.8b02720
    [11]
    P.Y. Hou, J.M. Yin, M. Ding, J.Z. Huang, and X.J. Xu, Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: Advances and perspectives, Small, 13(2017), No. 45, art. No. 1701802. doi: 10.1002/smll.201701802
    [12]
    S.M. Bak, K.W. Nam, W.Y. Chang, X.Q. Yu, E.Y. Hu, S. Hwang, E.A. Stach, K.B. Kim, K.Y. Chung, and X.Q. Yang, Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials, Chem. Mater., 25(2013), No. 3, p. 337. doi: 10.1021/cm303096e
    [13]
    K.L. Cheng, D.B. Mu, B.R Wu, L. Wang, Y. Jiang, and R. Wang, Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 342. doi: 10.1007/s12613-017-1413-6
    [14]
    U.H. Kim, D.W. Jun, K.J. Park, Q. Zhang, P. Kaghazchi, D. Aurbach, D.T. Major, G. Goobes, M. Dixit, N. Leifer, C.M. Wang, P. Yan, D. Ahn, K.H. Kim, C.S. Yoon, and Y.K. Sun, Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries, Energy Environ. Sci., 11(2018), No. 5, p. 1271. doi: 10.1039/C8EE00227D
    [15]
    K.K. Lee, W.S. Yoon, K.B. Kim, K.Y. Lee, and S.T. Hong, Thermal behavior and the decomposition mechanism of electrochemically delithiated Li1−xNiO2, J. Power Sources, 97-98(2001), p. 321. doi: 10.1016/S0378-7753(01)00548-1
    [16]
    S. Hwang, W. Chang, S.M. Kim, D. Su, D.H. Kim, J.Y. Lee, K.Y. Chung, and E.A. Stach, Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge, Chem. Mater., 26(2014), No. 2, p. 1084. doi: 10.1021/cm403332s
    [17]
    H.L. Zhang, F. Omenya, M.S. Whittingham, C.M. Wang, and G.W. Zhou, Formation of an anti-core-shell structure in layered oxide cathodes for Li-ion batteries, ACS Energy Lett., 2(2017), No. 11, p. 2598. doi: 10.1021/acsenergylett.7b00921
    [18]
    S.H. Lee, S. Lee, B.S. Jin, and H.S. Kim, Preparation and electrochemical performances of Ni-rich LiNi0.91Co0.06Mn0.03O2 cathode for high-energy LIBs, Int. J. Hydrogen Energy, 44(2019), No. 26, p. 13684. doi: 10.1016/j.ijhydene.2019.04.002
    [19]
    D.P. Abraham, R.D. Twesten, M. Balasubramanian, I. Petrov, J. McBreen, and K. Amine, Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells, Electrochem. Commun., 4(2002), No. 8, p. 620. doi: 10.1016/S1388-2481(02)00388-0
    [20]
    J.K. Zhao, Z.X. Wang, J.X. Wang, H.J Guo, X.H. Li, W.H. Gui, N. Chen, and G.H. Yan, Anchoring K+ in Li+ sites of LiNi0.8Co0.15Al0.05.O2 cathode material to suppress its structural degradation during high-voltage cycling, Energy Technol., 6(2018), No. 12, p. 2358. doi: 10.1002/ente.201800361
    [21]
    J. Yang and Y.Y. Xia, Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3, ACS Appl. Mater. Interfaces, 8(2016), No. 2, p. 1297. doi: 10.1021/acsami.5b09938
    [22]
    C.C. Fu, G.S. Li, D. Luo, Q. Li, J.M. Fan, and L.P. Li, Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance, ACS Appl. Mater. Interfaces, 6(2014), No. 18, p. 15822. doi: 10.1021/am5030726
    [23]
    B.S. Liu, Z.B. Wang, F.D. Yu, Y. Xue, G.J. Wang, Y. Zhang, and Y.X. Zhou, Facile strategy of NCA cation mixing regulation and its effect on electrochemical performance, RSC Adv., 6(2016), No. 110, p. 108558. doi: 10.1039/C6RA20146F
    [24]
    T. Hayashi, J. Okada, E. Toda, R. Kuzuo, N. Oshimura, N. Kuwata, and J. Kawamura, Degradation mechanism of LiNi0.82Co0.15Al0.03O2 positive electrodes of a lithium-ion battery by a long-term cycling test, J. Electrochem. Soc., 161(2014), No. 6, p. A1007. doi: 10.1149/2.056406jes
    [25]
    S. Sharifi-Asl, F.A. Soto, A. Nie, Y.F. Yuan, H. Asayesh-Ardakani, T. Foroozan, V. Yurkiv, B. Song, F. Mashayek, R.F. Klie, Amine, J. Lu, P.B. Balbuena, and R. Shahbazian-Yassar, Facet-dependent thermal instability in LiCoO2, Nano Lett., 17(2017), No. 4, p. 2165. doi: 10.1021/acs.nanolett.6b04502
    [26]
    J.F. Zhang, J.Y. Zhang, X. Ou, C.H. Wang, C.L. Peng, and B. Zhang, Enhancing high-voltage performance of Ni-rich cathode by surface modification of self-assembled NASICON fast ionic conductor LiZr2(PO4)3, ACS Appl. Mater. Interfaces, 11(2019), No. 17, p. 15507. doi: 10.1021/acsami.9b00389
    [27]
    C.L. Xu, W. Xiang, Z.G. Wu, Y.C. Li, Y.D. Xu, W.B. Hua, X.D. Guo, X.B. Zhang, and B.H. Zhong, A comparative study of crystalline and amorphous Li0.5La0.5TiO3 as surface coating layers to enhance the electrochemical performance of LiNi0.815Co0.15Al0.035O2 cathode, J. Alloys Compd., 740(2018), p. 428. doi: 10.1016/j.jallcom.2017.12.193
    [28]
    Y.Y. Ren, H.H. Yao, J.H. Hu, G.Q. Cao, J.J. Tian, and J.M. Pan, Evolution of “spinodal decomposition”-like structures during the oxidation of Zr(Fe,Nb)2 under subcritical environment, Scripta Mater., 187(2020), p. 107. doi: 10.1016/j.scriptamat.2020.06.018
    [29]
    S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T.Y. Kim, S.W. Baek, J.M. Lee, S. Doo, and N. Machida, A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte, J. Power Sources, 248(2014), p. 943. doi: 10.1016/j.jpowsour.2013.10.005
    [30]
    J.G. Duan, C. Wu, Y.B. Cao, K. Du, Z.D. Peng, and G.R. Hu, Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating, Electrochim. Acta, 221(2016), p. 14. doi: 10.1016/j.electacta.2016.10.158
    [31]
    E.Y. Zhao, M.M. Chen, Z.B. Hu, D.F. Chen, L.M. Yang, and X.L. Xiao, Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating, J. Power Sources, 343(2017), p. 345. doi: 10.1016/j.jpowsour.2017.01.066
    [32]
    X.D. Jiang, Y. Wei, X.H. Yu, P. Dong, Y.J. Zhang, Y.N. Zhang, and J.X. Liu, CeVO4-coated LiNi0.6Co0.2Mn0.2O2 as positive material: Towards the excellent electrochemical performance at normal and high temperature, J. Mater. Sci. Mater. Electron., 29(2018), No. 18, p. 15869. doi: 10.1007/s10854-018-9673-0
    [33]
    Y.Q. Huang, Y.H. Huang, and X.L. Hu, Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4, Electrochim. Acta, 231(2017), p. 294. doi: 10.1016/j.electacta.2017.02.067
    [34]
    S.M. Sun, T. Liu, Q.H. Niu, X.L. Sun, D.P. Song, H. Liu, X.X. Zhou, T. Ohsaka, and J.F. Wu, Improvement of superior cycle performance of LiNi0.8Co0.15Al0.05O2 cathode for lithium-ion batteries by multiple compound modifications, J. Electroanal. Chem., 838(2019), p. 178. doi: 10.1016/j.jelechem.2019.03.009
    [35]
    X.S. He, C.Y. Du, B. Shen, C. Chen, X. Xu, Y.J. Wang, P.J. Zuo, Y.L. Ma, X.Q. Cheng, and G.P. Yin, Electronically conductive Sb-doped SnO2 nanoparticles coated LiNi0.8Co0.15Al0.05O2 cathode material with enhanced electrochemical properties for Li-ion batteries, Electrochim. Acta, 236(2017), p. 273. doi: 10.1016/j.electacta.2017.03.215
    [36]
    C.D. Liu, G.Q. Cao, Z.H. Wu, J.H. Hu, H.Y. Wang, and G.S. Shao, Surficial structure retention mechanism for LiNi0.8Co0.15Al0.05O2 in a full gradient cathode, ACS Appl. Mater. Interfaces, 11(2019), No. 35, p. 31991. doi: 10.1021/acsami.9b10160
    [37]
    F.Y. Fan, W.H. Woodford, Z. Li, N. Baram, K.C. Smith, A. Helal, G.H. Mckinley, W.C. Carter, and Y.M. Chiang, Polysulfide flow batteries enabled by percolating nanoscale conductor networks, Nano Lett., 14(2014), No. 4, p. 2210. doi: 10.1021/nl500740t
    [38]
    Y.K. Wang, R.F. Zhang, J. Chen, H. Wu, S.Y. Lu, K. Wang, H.L. Li, C.J. Harris, K. Xi, R.V. Kumar, and S.J. Ding, Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering, Adv. Energy Mater., 9(2019), No. 24, art. No. 1900953. doi: 10.1002/aenm.201900953
    [39]
    R. Amin, D.B. Ravnsbaek, and Y.M. Chiang, Characterization of electronic and ionic transport in Li1−xNi0.8Co0.15Al0.05O2 (NCA), J. Electrochem. Soc., 162(2015), No. 7, p. A1163. doi: 10.1149/2.0171507jes
    [40]
    H. Yuan, J.Q. Huang, H.J. Peng, M.M. Titirici, R. Xiang, R.J Chen, Q.B. Liu, and Q. Zhang, A review of functional binders in lithium–sulfur batteries, Adv. Energy Mater., 8(2018), No. 31, art. No. 1802107. doi: 10.1002/aenm.201802107
    [41]
    X.N. He, S.Y. Li, G.Q. Cao, J.H. Hu, J.H. Zhang, R. Qiao, J.M. Pan, and G.S. Shao, In situ atomic-scale engineering of the chemistry and structure of the grain boundaries region of Li3xLa2/3−xTiO3, Scripta Mater., 185(2020), p. 134. doi: 10.1016/j.scriptamat.2020.04.018
    [42]
    T. Yang, Y. Li, and C.K. Chan, Enhanced lithium ion conductivity in lithium lanthanum titanate solid electrolyte nanowires prepared by electrospinning, J. Power Sources, 287(2015), p. 164. doi: 10.1016/j.jpowsour.2015.04.044
    [43]
    W.E. Teo and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology, 17(2006), No. 14, p. R89. doi: 10.1088/0957-4484/17/14/R01
    [44]
    W. Liu, S.W. Lee, D.C. Lin, F.F. Shi, S. Wang, A.D Sendek, and Y. Cui, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires, Nat. Energy, 2(2017), No. 5, art. No. 17035. doi: 10.1038/nenergy.2017.35
    [45]
    N.C. Zheng, X.F. Li, S. Yan, Q. Wang, R. Qiao, J.H. Hu, J.J. Fan, G.Q. Cao, and G.S. Shao, Nano-porous Hollow Li0.5La0.5TiO3 spheres and electronic structure modulation for ultra-fast H2S detection, J. Mater. Chem. A, 8(2020), No. 5, p. 2376. doi: 10.1039/C9TA10482H
    [46]
    L. Fan, S.Y. Wei, S.Y. Li, Q. Li, and Y.Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries, Adv. Energy Mater., 8(2018), No. 11, art. No. 1702657. doi: 10.1002/aenm.201702657
    [47]
    Q. Wang, J.H. Zhang, X.N. He, G.Q. Cao, J.H. Hu, J.M. Pan, and G.S. Shao, Synergistic effect of cation ordered structure and grain boundary engineering on long-term cycling of Li0.35La0.55TiO3-based solid batteries, J. Eur. Ceram. Soc., 39(2019), No. 11, p. 3332. doi: 10.1016/j.jeurceramsoc.2019.04.045
    [48]
    J.H. Hu, P. Wang, P.P. Liu, G.Q. Cao, Q. Wang, M. Wei, J. Mao, C.H. Liang, and G.Q. Shao, In situ fabrication of nano porous NiO-capped Ni3P film as anode for Li-ion battery with different lithiation path and significantly enhanced electrochemical performance, Electrochim. Acta, 220(2016), p. 258. doi: 10.1016/j.electacta.2016.10.052
    [49]
    H.J. Noh, S.G. Youn, C.S. Yoon, and Y.K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 233(2013), p. 121. doi: 10.1016/j.jpowsour.2013.01.063
    [50]
    L. Croguennec, C. Pouillerie, and C. Delmas, Structural characterisation of new metastable NiO2 phases, Solid State Ionics, 135(2000), No. 1-4, p. 259. doi: 10.1016/S0167-2738(00)00441-0
    [51]
    P. Wang, J.H. Hu, G.Q. Cao, S.L. Zhang, P. Zhang, C.H. Liang, Z. Wang, and G.S. Shao, Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance, Appl. Surf. Sci., 435(2018), p. 1150. doi: 10.1016/j.apsusc.2017.11.079
    [52]
    J.H. Hu, L. Yang, G.Q. Cao, Y.F. Yun, G.H. Yuan, Q. Yue, and G.S. Shao, On the oxidation behavior of (Zr,Nb)2Fe under simulated nuclear reactor conditions, Corros. Sci., 112(2016), p. 718. doi: 10.1016/j.corsci.2016.08.006
    [53]
    W. Li, J.N. Reimers, and J.R. Dahn, In situ X-ray diffraction and electrochemical studies of Li1−xNiO2, Solid State Ionics, 67(1993), No. 1-2, p. 123. doi: 10.1016/0167-2738(93)90317-V
    [54]
    S.Q. Cao, Q.J. Wang, J.H. Hu, Z.Y. Fu, K.F. Bai, G.S. Shao, and G.Q. Cao, Dominant growth of higher manganese silicide film on Si substrate by introducing a Si oxide capping layer, J. Alloys Compd., 740(2018), p. 541. doi: 10.1016/j.jallcom.2017.10.124
    [55]
    Y. Cho, P. Oh, and J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer, Nano Lett., 13(2013), No. 3, p. 1145. doi: 10.1021/nl304558t
    [56]
    Z.J. Peng, G.W. Yang, F.Q. Li, Z.H. Zhu, and Z.Y. Liu, Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5 C by Li2SiO3 coating and Si4+ doping, J. Alloys Compd., 762(2018), p. 827. doi: 10.1016/j.jallcom.2018.05.226
    [57]
    S.J. Zheng, R. Huang, Y. Makimura, Y. Ukyo, C.A.J. Fisher, T. Hirayama, and Y. Ikuhara, Microstructural changes in LiNi0.8Co0.15Al0.05O2 positive electrode material during the first cycle, J. Electrochem. Soc., 158(2011), No. 4, p. A357. doi: 10.1149/1.3544843
    [58]
    H. Setiawan, H.T.B. Murti Petrus, and I. Perdana1, Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 98. doi: 10.1007/s12613-019-1713-0
    [59]
    G.Q. Cao, Y.F. Yun, H.J. Xu, G.H. Yuan, J.H. Hu, and G.S. Shao, A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion, Corros. Sci., 152(2019), p. 54. doi: 10.1016/j.corsci.2019.03.009
    [60]
    B. Xu, C.R. Fell, M.F. Chi, and Y.S. Meng, Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study, Energ. Environ. Sci., 4(2011), No. 6, p. 2223. doi: 10.1039/c1ee01131f
    [61]
    Q. Wang, X.F. Li, X.N. He, L.Y. Cao, G.Q. Cao, H.J. Xu, J.H. Hu, and G.S. Shao, Two-pronged approach to regulate Li etching for a stable anode, J. Power Sources, 455(2020), art. No. 227988. doi: 10.1016/j.jpowsour.2020.227988
    [62]
    D.N. Qian, B. Xu, H.M. Cho, T. Hatsukade, K.J. Carroll, and Y.S. Meng, Lithium lanthanum titanium oxides: A fast ionic conductive coating for lithium-ion battery cathodes, Chem. Mater., 24(2012), No. 14, p. 2744. doi: 10.1021/cm300929r
    [63]
    H.Y. Guan, F. Lian, Y. Ren, Y. Wen, X.R. Pan, and J.L Sun, Comparative study of different membranes as separators for rechargeable lithium-ion batteries, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 598. doi: 10.1007/s12613-013-0772-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(4221) PDF Downloads(66) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return