Hao-yang Wang, Xue Cheng, Xiao-feng Li, Ji-min Pan, and Jun-hua Hu, Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 305-316. https://doi.org/10.1007/s12613-020-2145-6
Cite this article as:
Hao-yang Wang, Xue Cheng, Xiao-feng Li, Ji-min Pan, and Jun-hua Hu, Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 305-316. https://doi.org/10.1007/s12613-020-2145-6
Research Article

Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode

+ Author Affiliations
  • Corresponding author:

    Jun-hua Hu    E-mail: hujh@zzu.edu.cn

  • Received: 25 May 2020Revised: 12 July 2020Accepted: 15 July 2020Available online: 17 July 2020
  • To probe the coupling effect of the electron and Li ion conductivities in Ni-rich layered materials (LiNi0.8Co0.15Al0.05O2, NCA), lithium lanthanum titanate (LLTO) nanofiber and carbon-coated LLTO fiber (LLTO@C) materials were introduced to polyvinylidene difluoride in a cathode. The enhancement of the conductivity was indicated by the suppressed impedance and polarization. At 1 and 5 C, the cathodes with coupling conductive paths had a more stable cycling performance. The coupling mechanism was analyzed based on the chemical state and structure evolution of NCA after cycling for 200 cycles at 5 C. In the pristine cathode, the propagation of lattice damaged regions, which consist of high-density edge-dislocation walls, destroyed the bulk integrity of NCA. In addition, the formation of a rock-salt phase on the surface of NCA caused a capacity loss. In contrast, in the LLTO@C modified cathode, although the formation of dislocation-driven atomic lattice broken regions and cation mixing occurred, they were limited to a scale of several atoms, which retarded the generation of the rock-salt phase and resulted in a pre-eminent capacity retention. Only NiO phase “pitting” occurred. A mechanism based on the synergistic transport of Li ions and electrons was proposed.
  • loading
  • [1]
    L.F. Guo, S.Y. Zhang, J. Xie, D. Zhen, Y. Jin, K.Y. Wan, D.G. Zhuang, W.Q. Zheng, and X.B. Zhao, Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 515. doi: 10.1007/s12613-019-1900-z
    D.B. Li, L.Y. Cao, C.D. Liu, G.Q. Cao, J.H. Hu, J.B. Chen, and G.S. Shao, A designer fast Li-ion conductor Li6.25PS5.25Cl0.75 and its contribution to the polyethylene oxide based electrolyte, Appl. Surf. Sci., 493(2019), p. 1326. doi: 10.1016/j.apsusc.2019.07.041
    J.B. Goodenough, Electrochemical energy storage in a sustainable modern society, Energy Environ. Sci., 7(2014), No. 1, p. 14. doi: 10.1039/C3EE42613K
    Y. Han, S.Y. Liu, L. Cui, L. Xu, J. Xie, X.K. Xia, W.K. Hao, B. Wang, H. Li, and J. Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 88. doi: 10.1007/s12613-018-1550-6
    Y.M. Sun, N. Liu, and Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1(2016), No. 7, art. No. 16071. doi: 10.1038/nenergy.2016.71
    G.Q. Cao, Y.Y. Ren, K.K. Wu, H.H. Yao, J.H. Hu, G.S. Shao, and G.H. Yuan, Life extension strategy and research progress of zirconium alloy cladding applied to light water reactors, Surf. Technol., 48(2019), No. 11, p. 69.
    G.Q. Cao, L. Yang, G.H. Yuan, J.H. Hu, G.S. Shao, and L. Yan, Chemical diversity of iron species and structure evolution during the oxidation of C14 laves phase Zr(Fe,Nb)2 in subcritical environment, Corros. Sci., 162(2020), art. No. 108218. doi: 10.1016/j.corsci.2019.108218
    A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO–C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473. doi: 10.1007/s12613-018-1702-8
    L.P. Wang, G. Chen, Q.X. Shen, G.M. Li, S.Y. Guan, and B. Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1027. doi: 10.1007/s12613-018-1653-0
    N.V. Faenza, N. Pereira, D.M. Halat, J. Vinckeviciute, L. Bruce, M.D. Radin, P. Mukherjee, F. Badway, A. Halajko, F. Cosandey, C.P. Grey, A. Van der Ven, and G.G. Amatucci, Phase evolution and degradation modes of R3-m LixNi1−yzCoyAlzO2 electrodes cycled near complete delithiation, Chem. Mater., 30(2018), No. 21, p. 7545. doi: 10.1021/acs.chemmater.8b02720
    P.Y. Hou, J.M. Yin, M. Ding, J.Z. Huang, and X.J. Xu, Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: Advances and perspectives, Small, 13(2017), No. 45, art. No. 1701802. doi: 10.1002/smll.201701802
    S.M. Bak, K.W. Nam, W.Y. Chang, X.Q. Yu, E.Y. Hu, S. Hwang, E.A. Stach, K.B. Kim, K.Y. Chung, and X.Q. Yang, Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials, Chem. Mater., 25(2013), No. 3, p. 337. doi: 10.1021/cm303096e
    K.L. Cheng, D.B. Mu, B.R Wu, L. Wang, Y. Jiang, and R. Wang, Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 342. doi: 10.1007/s12613-017-1413-6
    U.H. Kim, D.W. Jun, K.J. Park, Q. Zhang, P. Kaghazchi, D. Aurbach, D.T. Major, G. Goobes, M. Dixit, N. Leifer, C.M. Wang, P. Yan, D. Ahn, K.H. Kim, C.S. Yoon, and Y.K. Sun, Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries, Energy Environ. Sci., 11(2018), No. 5, p. 1271. doi: 10.1039/C8EE00227D
    K.K. Lee, W.S. Yoon, K.B. Kim, K.Y. Lee, and S.T. Hong, Thermal behavior and the decomposition mechanism of electrochemically delithiated Li1−xNiO2, J. Power Sources, 97-98(2001), p. 321. doi: 10.1016/S0378-7753(01)00548-1
    S. Hwang, W. Chang, S.M. Kim, D. Su, D.H. Kim, J.Y. Lee, K.Y. Chung, and E.A. Stach, Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge, Chem. Mater., 26(2014), No. 2, p. 1084. doi: 10.1021/cm403332s
    H.L. Zhang, F. Omenya, M.S. Whittingham, C.M. Wang, and G.W. Zhou, Formation of an anti-core-shell structure in layered oxide cathodes for Li-ion batteries, ACS Energy Lett., 2(2017), No. 11, p. 2598. doi: 10.1021/acsenergylett.7b00921
    S.H. Lee, S. Lee, B.S. Jin, and H.S. Kim, Preparation and electrochemical performances of Ni-rich LiNi0.91Co0.06Mn0.03O2 cathode for high-energy LIBs, Int. J. Hydrogen Energy, 44(2019), No. 26, p. 13684. doi: 10.1016/j.ijhydene.2019.04.002
    D.P. Abraham, R.D. Twesten, M. Balasubramanian, I. Petrov, J. McBreen, and K. Amine, Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells, Electrochem. Commun., 4(2002), No. 8, p. 620. doi: 10.1016/S1388-2481(02)00388-0
    J.K. Zhao, Z.X. Wang, J.X. Wang, H.J Guo, X.H. Li, W.H. Gui, N. Chen, and G.H. Yan, Anchoring K+ in Li+ sites of LiNi0.8Co0.15Al0.05.O2 cathode material to suppress its structural degradation during high-voltage cycling, Energy Technol., 6(2018), No. 12, p. 2358. doi: 10.1002/ente.201800361
    J. Yang and Y.Y. Xia, Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3, ACS Appl. Mater. Interfaces, 8(2016), No. 2, p. 1297. doi: 10.1021/acsami.5b09938
    C.C. Fu, G.S. Li, D. Luo, Q. Li, J.M. Fan, and L.P. Li, Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance, ACS Appl. Mater. Interfaces, 6(2014), No. 18, p. 15822. doi: 10.1021/am5030726
    B.S. Liu, Z.B. Wang, F.D. Yu, Y. Xue, G.J. Wang, Y. Zhang, and Y.X. Zhou, Facile strategy of NCA cation mixing regulation and its effect on electrochemical performance, RSC Adv., 6(2016), No. 110, p. 108558. doi: 10.1039/C6RA20146F
    T. Hayashi, J. Okada, E. Toda, R. Kuzuo, N. Oshimura, N. Kuwata, and J. Kawamura, Degradation mechanism of LiNi0.82Co0.15Al0.03O2 positive electrodes of a lithium-ion battery by a long-term cycling test, J. Electrochem. Soc., 161(2014), No. 6, p. A1007. doi: 10.1149/2.056406jes
    S. Sharifi-Asl, F.A. Soto, A. Nie, Y.F. Yuan, H. Asayesh-Ardakani, T. Foroozan, V. Yurkiv, B. Song, F. Mashayek, R.F. Klie, Amine, J. Lu, P.B. Balbuena, and R. Shahbazian-Yassar, Facet-dependent thermal instability in LiCoO2, Nano Lett., 17(2017), No. 4, p. 2165. doi: 10.1021/acs.nanolett.6b04502
    J.F. Zhang, J.Y. Zhang, X. Ou, C.H. Wang, C.L. Peng, and B. Zhang, Enhancing high-voltage performance of Ni-rich cathode by surface modification of self-assembled NASICON fast ionic conductor LiZr2(PO4)3, ACS Appl. Mater. Interfaces, 11(2019), No. 17, p. 15507. doi: 10.1021/acsami.9b00389
    C.L. Xu, W. Xiang, Z.G. Wu, Y.C. Li, Y.D. Xu, W.B. Hua, X.D. Guo, X.B. Zhang, and B.H. Zhong, A comparative study of crystalline and amorphous Li0.5La0.5TiO3 as surface coating layers to enhance the electrochemical performance of LiNi0.815Co0.15Al0.035O2 cathode, J. Alloys Compd., 740(2018), p. 428. doi: 10.1016/j.jallcom.2017.12.193
    Y.Y. Ren, H.H. Yao, J.H. Hu, G.Q. Cao, J.J. Tian, and J.M. Pan, Evolution of “spinodal decomposition”-like structures during the oxidation of Zr(Fe,Nb)2 under subcritical environment, Scripta Mater., 187(2020), p. 107. doi: 10.1016/j.scriptamat.2020.06.018
    S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T.Y. Kim, S.W. Baek, J.M. Lee, S. Doo, and N. Machida, A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte, J. Power Sources, 248(2014), p. 943. doi: 10.1016/j.jpowsour.2013.10.005
    J.G. Duan, C. Wu, Y.B. Cao, K. Du, Z.D. Peng, and G.R. Hu, Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating, Electrochim. Acta, 221(2016), p. 14. doi: 10.1016/j.electacta.2016.10.158
    E.Y. Zhao, M.M. Chen, Z.B. Hu, D.F. Chen, L.M. Yang, and X.L. Xiao, Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating, J. Power Sources, 343(2017), p. 345. doi: 10.1016/j.jpowsour.2017.01.066
    X.D. Jiang, Y. Wei, X.H. Yu, P. Dong, Y.J. Zhang, Y.N. Zhang, and J.X. Liu, CeVO4-coated LiNi0.6Co0.2Mn0.2O2 as positive material: Towards the excellent electrochemical performance at normal and high temperature, J. Mater. Sci. Mater. Electron., 29(2018), No. 18, p. 15869. doi: 10.1007/s10854-018-9673-0
    Y.Q. Huang, Y.H. Huang, and X.L. Hu, Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4, Electrochim. Acta, 231(2017), p. 294. doi: 10.1016/j.electacta.2017.02.067
    S.M. Sun, T. Liu, Q.H. Niu, X.L. Sun, D.P. Song, H. Liu, X.X. Zhou, T. Ohsaka, and J.F. Wu, Improvement of superior cycle performance of LiNi0.8Co0.15Al0.05O2 cathode for lithium-ion batteries by multiple compound modifications, J. Electroanal. Chem., 838(2019), p. 178. doi: 10.1016/j.jelechem.2019.03.009
    X.S. He, C.Y. Du, B. Shen, C. Chen, X. Xu, Y.J. Wang, P.J. Zuo, Y.L. Ma, X.Q. Cheng, and G.P. Yin, Electronically conductive Sb-doped SnO2 nanoparticles coated LiNi0.8Co0.15Al0.05O2 cathode material with enhanced electrochemical properties for Li-ion batteries, Electrochim. Acta, 236(2017), p. 273. doi: 10.1016/j.electacta.2017.03.215
    C.D. Liu, G.Q. Cao, Z.H. Wu, J.H. Hu, H.Y. Wang, and G.S. Shao, Surficial structure retention mechanism for LiNi0.8Co0.15Al0.05O2 in a full gradient cathode, ACS Appl. Mater. Interfaces, 11(2019), No. 35, p. 31991. doi: 10.1021/acsami.9b10160
    F.Y. Fan, W.H. Woodford, Z. Li, N. Baram, K.C. Smith, A. Helal, G.H. Mckinley, W.C. Carter, and Y.M. Chiang, Polysulfide flow batteries enabled by percolating nanoscale conductor networks, Nano Lett., 14(2014), No. 4, p. 2210. doi: 10.1021/nl500740t
    Y.K. Wang, R.F. Zhang, J. Chen, H. Wu, S.Y. Lu, K. Wang, H.L. Li, C.J. Harris, K. Xi, R.V. Kumar, and S.J. Ding, Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering, Adv. Energy Mater., 9(2019), No. 24, art. No. 1900953. doi: 10.1002/aenm.201900953
    R. Amin, D.B. Ravnsbaek, and Y.M. Chiang, Characterization of electronic and ionic transport in Li1−xNi0.8Co0.15Al0.05O2 (NCA), J. Electrochem. Soc., 162(2015), No. 7, p. A1163. doi: 10.1149/2.0171507jes
    H. Yuan, J.Q. Huang, H.J. Peng, M.M. Titirici, R. Xiang, R.J Chen, Q.B. Liu, and Q. Zhang, A review of functional binders in lithium–sulfur batteries, Adv. Energy Mater., 8(2018), No. 31, art. No. 1802107. doi: 10.1002/aenm.201802107
    X.N. He, S.Y. Li, G.Q. Cao, J.H. Hu, J.H. Zhang, R. Qiao, J.M. Pan, and G.S. Shao, In situ atomic-scale engineering of the chemistry and structure of the grain boundaries region of Li3xLa2/3−xTiO3, Scripta Mater., 185(2020), p. 134. doi: 10.1016/j.scriptamat.2020.04.018
    T. Yang, Y. Li, and C.K. Chan, Enhanced lithium ion conductivity in lithium lanthanum titanate solid electrolyte nanowires prepared by electrospinning, J. Power Sources, 287(2015), p. 164. doi: 10.1016/j.jpowsour.2015.04.044
    W.E. Teo and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology, 17(2006), No. 14, p. R89. doi: 10.1088/0957-4484/17/14/R01
    W. Liu, S.W. Lee, D.C. Lin, F.F. Shi, S. Wang, A.D Sendek, and Y. Cui, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires, Nat. Energy, 2(2017), No. 5, art. No. 17035. doi: 10.1038/nenergy.2017.35
    N.C. Zheng, X.F. Li, S. Yan, Q. Wang, R. Qiao, J.H. Hu, J.J. Fan, G.Q. Cao, and G.S. Shao, Nano-porous Hollow Li0.5La0.5TiO3 spheres and electronic structure modulation for ultra-fast H2S detection, J. Mater. Chem. A, 8(2020), No. 5, p. 2376. doi: 10.1039/C9TA10482H
    L. Fan, S.Y. Wei, S.Y. Li, Q. Li, and Y.Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries, Adv. Energy Mater., 8(2018), No. 11, art. No. 1702657. doi: 10.1002/aenm.201702657
    Q. Wang, J.H. Zhang, X.N. He, G.Q. Cao, J.H. Hu, J.M. Pan, and G.S. Shao, Synergistic effect of cation ordered structure and grain boundary engineering on long-term cycling of Li0.35La0.55TiO3-based solid batteries, J. Eur. Ceram. Soc., 39(2019), No. 11, p. 3332. doi: 10.1016/j.jeurceramsoc.2019.04.045
    J.H. Hu, P. Wang, P.P. Liu, G.Q. Cao, Q. Wang, M. Wei, J. Mao, C.H. Liang, and G.Q. Shao, In situ fabrication of nano porous NiO-capped Ni3P film as anode for Li-ion battery with different lithiation path and significantly enhanced electrochemical performance, Electrochim. Acta, 220(2016), p. 258. doi: 10.1016/j.electacta.2016.10.052
    H.J. Noh, S.G. Youn, C.S. Yoon, and Y.K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 233(2013), p. 121. doi: 10.1016/j.jpowsour.2013.01.063
    L. Croguennec, C. Pouillerie, and C. Delmas, Structural characterisation of new metastable NiO2 phases, Solid State Ionics, 135(2000), No. 1-4, p. 259. doi: 10.1016/S0167-2738(00)00441-0
    P. Wang, J.H. Hu, G.Q. Cao, S.L. Zhang, P. Zhang, C.H. Liang, Z. Wang, and G.S. Shao, Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance, Appl. Surf. Sci., 435(2018), p. 1150. doi: 10.1016/j.apsusc.2017.11.079
    J.H. Hu, L. Yang, G.Q. Cao, Y.F. Yun, G.H. Yuan, Q. Yue, and G.S. Shao, On the oxidation behavior of (Zr,Nb)2Fe under simulated nuclear reactor conditions, Corros. Sci., 112(2016), p. 718. doi: 10.1016/j.corsci.2016.08.006
    W. Li, J.N. Reimers, and J.R. Dahn, In situ X-ray diffraction and electrochemical studies of Li1−xNiO2, Solid State Ionics, 67(1993), No. 1-2, p. 123. doi: 10.1016/0167-2738(93)90317-V
    S.Q. Cao, Q.J. Wang, J.H. Hu, Z.Y. Fu, K.F. Bai, G.S. Shao, and G.Q. Cao, Dominant growth of higher manganese silicide film on Si substrate by introducing a Si oxide capping layer, J. Alloys Compd., 740(2018), p. 541. doi: 10.1016/j.jallcom.2017.10.124
    Y. Cho, P. Oh, and J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer, Nano Lett., 13(2013), No. 3, p. 1145. doi: 10.1021/nl304558t
    Z.J. Peng, G.W. Yang, F.Q. Li, Z.H. Zhu, and Z.Y. Liu, Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5 C by Li2SiO3 coating and Si4+ doping, J. Alloys Compd., 762(2018), p. 827. doi: 10.1016/j.jallcom.2018.05.226
    S.J. Zheng, R. Huang, Y. Makimura, Y. Ukyo, C.A.J. Fisher, T. Hirayama, and Y. Ikuhara, Microstructural changes in LiNi0.8Co0.15Al0.05O2 positive electrode material during the first cycle, J. Electrochem. Soc., 158(2011), No. 4, p. A357. doi: 10.1149/1.3544843
    H. Setiawan, H.T.B. Murti Petrus, and I. Perdana1, Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 98. doi: 10.1007/s12613-019-1713-0
    G.Q. Cao, Y.F. Yun, H.J. Xu, G.H. Yuan, J.H. Hu, and G.S. Shao, A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion, Corros. Sci., 152(2019), p. 54. doi: 10.1016/j.corsci.2019.03.009
    B. Xu, C.R. Fell, M.F. Chi, and Y.S. Meng, Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study, Energ. Environ. Sci., 4(2011), No. 6, p. 2223. doi: 10.1039/c1ee01131f
    Q. Wang, X.F. Li, X.N. He, L.Y. Cao, G.Q. Cao, H.J. Xu, J.H. Hu, and G.S. Shao, Two-pronged approach to regulate Li etching for a stable anode, J. Power Sources, 455(2020), art. No. 227988. doi: 10.1016/j.jpowsour.2020.227988
    D.N. Qian, B. Xu, H.M. Cho, T. Hatsukade, K.J. Carroll, and Y.S. Meng, Lithium lanthanum titanium oxides: A fast ionic conductive coating for lithium-ion battery cathodes, Chem. Mater., 24(2012), No. 14, p. 2744. doi: 10.1021/cm300929r
    H.Y. Guan, F. Lian, Y. Ren, Y. Wen, X.R. Pan, and J.L Sun, Comparative study of different membranes as separators for rechargeable lithium-ion batteries, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 598. doi: 10.1007/s12613-013-0772-x
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Share Article

    Article Metrics

    Article views (1766) PDF downloads(26) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint