M.M. Atta, H.A. Ashry, G.M. Nasr, and H.A. Abd El-Rehim, Electrical, thermal and electrochemical properties of γ-ray-reduced graphene oxide, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1726-1734. https://doi.org/10.1007/s12613-020-2146-5
Cite this article as:
M.M. Atta, H.A. Ashry, G.M. Nasr, and H.A. Abd El-Rehim, Electrical, thermal and electrochemical properties of γ-ray-reduced graphene oxide, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1726-1734. https://doi.org/10.1007/s12613-020-2146-5
Research Article

Electrical, thermal and electrochemical properties of γ-ray-reduced graphene oxide

+ Author Affiliations
  • Corresponding author:

    M.M. Atta    E-mail: mmatta2007@yahoo.com

  • Received: 5 March 2020Revised: 9 July 2020Accepted: 15 July 2020Available online: 17 July 2020
  • The properties of γ-ray-reduced graphene oxide samples (GRGOs) were compared with those of hydrazine hydrate-reduced graphene oxide (HRGO). Fourier transform infrared spectroscopy, X-ray diffractometry, Raman spectroscopy, Brunauer–Emmett–Teller surface area analysis, thermogravimetric analysis, electrometry, and cyclic voltammetry were carried out to verify the reduction process, structural changes, and defects of the samples, as well as to measure their thermal, electrical, and electrochemical properties. Irradiation with γ-rays distorted the structure of GRGOs and generated massive defects through the extensive formation of new smaller sp2-hybridized domains compared with those of HRGO. The thermal stability of GRGOs was higher than that of HRGO, indicating the highly efficient removal of thermally-labile oxygen species by γ-rays. RRGO prepared at 80 kGy showed a pseudocapacitive behavior comparable with the electrical double-layer capacitance behavior of HRGO. Interestingly, the specific capacitance of GRGO was enhanced by nearly three times compared with that of HRGO. These results reflect the advantages of radiation reduction in energy storage applications.

  • loading
  • [1]
    K. Le, Z. Wang, F.L. Wang, Q. Wang, Q. Shao, V. Murugadoss, S.D. Wu, W. Liu, J.R. Liu, Q. Gao, and Z.H. Guo, Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors, Dalton Trans., 48(2019), No. 16, p. 5193. doi: 10.1039/C9DT00615J
    [2]
    R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, and H.M. Cheng, The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries, Adv. Mater., 31(2019), No. 9, art. No. 1800863. doi: 10.1002/adma.201800863
    [3]
    A. Alnuaimi, I. Almansouri, I. Saadat, and A. Nayfeh, High performance graphene-silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition, Sol. Energy, 164(2018), p. 174. doi: 10.1016/j.solener.2018.02.020
    [4]
    P. Sutter, How silicon leaves the scene, Nat. Mater., 8(2009), No. 3, p. 171. doi: 10.1038/nmat2392
    [5]
    A. Reina, X.T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9(2009), No. 1, p. 30. doi: 10.1021/nl801827v
    [6]
    Y.B. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438(2005), No. 7065, p. 201. doi: 10.1038/nature04235
    [7]
    M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, and I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater., 19(2007), No. 18, p. 4396. doi: 10.1021/cm0630800
    [8]
    V.B. Mohan, K.T. Lau, D. Hui, and D. Bhattacharyya, Graphene-based materials and their composites: A review on production, applications and product limitations, Composites Part B, 142(2018), p. 200. doi: 10.1016/j.compositesb.2018.01.013
    [9]
    S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide, Carbon, 49(2011), No. 9, p. 3019. doi: 10.1016/j.carbon.2011.02.071
    [10]
    D.D. Hou, Q.F. Liu, H.F. Cheng, H. Zhang, and S. Wang, Green reduction of graphene oxide via Lycium barbarum extract, J. Solid State Chem., 246(2017), p. 351. doi: 10.1016/j.jssc.2016.12.008
    [11]
    S. Thakur and N. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: A review, Carbon, 94(2015), p. 224. doi: 10.1016/j.carbon.2015.06.030
    [12]
    D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin, and M. Chhowalla, High-quality graphene via microwave reduction of solution-exfoliated graphene oxide, Science, 353(2016), No. 6306, p. 1413. doi: 10.1126/science.aah3398
    [13]
    X.R. Zheng, B.H. Jia, X. Chen, and M. Gu, In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices, Adv. Mater., 26(2014), No. 17, p. 2699. doi: 10.1002/adma.201304681
    [14]
    C. Yang, J.Y. Gong, P. Zeng, X.L. Yang, R.Q. Liang, Q.R. Ou, and S.Y. Zhang, Fast room-temperature reduction of graphene oxide by methane/argon plasma for flexible electronics, Appl. Surf. Sci., 452(2018), p. 481. doi: 10.1016/j.apsusc.2018.04.272
    [15]
    C.Y. Lin, C.E. Cheng, S. Wang, H.W. Shiu, L.Y. Chang, C.H. Chen, T.W. Lin, C.S. Chang, and F.S.S. Chien, Synchrotron radiation soft X-ray induced reduction in graphene oxide characterized by time-resolved photoelectron spectroscopy, J. Phys. Chem. C, 119(2015), No. 23, p. 12910. doi: 10.1021/jp512055g
    [16]
    B.W. Zhang, L.F. Li, Z.Q. Wang, S.Y. Xie, Y.J. Zhang, Y. Shen, M. Yu, B. Deng, Q. Huang, C.H. Fan, and J.Y. Li, Radiation induced reduction: An effective and clean route to synthesize functionalized graphene, J. Mater. Chem., 22(2012), No. 16, p. 7775. doi: 10.1039/c2jm16722k
    [17]
    C.H. Jung, Y.W. Park, I.T. Hwang, Y.J. Go, S.I. Na, K. Shin, J.S. Lee, and J.H. Choi, Eco-friendly and simple radiation-based preparation of graphene and its application to organic solar cells, J. Phys. D: Appl. Phys., 47(2014), No. 1, art. No. 015105. doi: 10.1088/0022-3727/47/1/015105
    [18]
    Y.L. He, J.H. Li, L.F. Li, and J.Y. Li, Gamma-ray irradiation-induced reduction and self-assembly of graphene oxide into three-dimensional graphene aerogel, Mater. Lett., 177(2016), p. 76. doi: 10.1016/j.matlet.2016.04.187
    [19]
    H.T. Zhao, Z.G. Li, N. Zhang, Y.C. Du, S.W. Li, L. Shao, D.Y. Gao, X.J. Han, and P. Xu, γ-irradiation induced one-step synthesis of electromagnetic functionalized reduced graphene oxide–Ni nanocomposites, RSC Adv., 4(2014), No. 57, p. 30467. doi: 10.1039/C4RA05477F
    [20]
    M.L. Lu, J.H. Li, L.F. Li, J. Lin, and J.Y. Li, Fabrication of ultralight 3D graphene/Pt aerogel via in situ gamma-ray irradiation and its application for the catalytic degradation of methyl orange, Fullerenes Nanotubes Carbon Nanostruct., 28(2020), No. 5, p. 425. doi: 10.1080/1536383X.2019.1695602
    [21]
    B. Gupta, A.A. Melvin, T. Matthews, S. Dhara, S. Dash, and A.K. Tyagi, Facile gamma radiolytic methodology for TiO2–rGO synthesis: Effect on photo-catalytic H2 evolution, Int. J. Hydrogen Energy, 40(2015), No. 17, p. 5815. doi: 10.1016/j.ijhydene.2015.02.102
    [22]
    M.Q. Sun, G.C. Wang, X.W. Li, and C.Z. Li, Irradiation preparation of reduced graphene oxide/carbon nanotube composites for high-performance supercapacitors, J. Power Sources, 245(2014), p. 436. doi: 10.1016/j.jpowsour.2013.06.145
    [23]
    Y.J. Noh, S.C. Park, I.T. Hwang, J.H. Choi, S.S. Kim, C.H. Jung, and S.I. Na, High-performance polymer solar cells with radiation-induced and reduction-controllable reduced graphene oxide as an advanced hole transporting material, Carbon, 79(2014), p. 321. doi: 10.1016/j.carbon.2014.07.073
    [24]
    J. Shi, W.W. Jiang, L.S. Liu, M.L. Jing, F.Y. Li, Z.W. Xu, and X.X. Zhang, Elucidating synthesis of noble metal nanoparticles/graphene oxide in free-scavenger γ-irradiation, Curr. Appl. Phys., 19(2019), No. 7, p. 780. doi: 10.1016/j.cap.2019.03.022
    [25]
    Y.W. Zhang, H.L. Ma, Q.L. Zhang, J. Peng, J.Q. Li, M.L. Zhai, and Z.Z. Yu, Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide, J. Mater. Chem., 22(2012), No. 26, p. 13064. doi: 10.1039/c2jm32231e
    [26]
    Y. Yang, L. Chen, D.Y. Li, R.B. Yi, J.W. Mo, M.H. Wu, and G. Xu, Controllable reduction of graphene oxide by electron-beam irradiation, RSC Adv., 9(2019), No. 7, p. 3597. doi: 10.1039/C8RA06797J
    [27]
    J.M. Jung, C.H. Jung, M.S. Oh, I.T. Hwang, C.H. Jung, K. Shin, J. Hwang, S.H. Park, and J.H. Choi, Rapid, facile, and eco-friendly reduction of graphene oxide by electron beam irradiation in an alcohol–water solution, Mater. Lett., 126(2014), p. 151. doi: 10.1016/j.matlet.2014.04.059
    [28]
    M. Kang, D.H. Lee, J. Yang, Y.M. Kang, and H. Jung, Simultaneous reduction and nitrogen doping of graphite oxide by using electron beam irradiation, RSC Adv., 5(2015), No. 126, p. 104502. doi: 10.1039/C5RA20199C
    [29]
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4(2010), No. 8, p. 4806. doi: 10.1021/nn1006368
    [30]
    A. Buchsteiner, A. Lerf, and J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering, J. Phys. Chem. B, 110(2006), No. 45, p. 22328. doi: 10.1021/jp0641132
    [31]
    V.B. Mohan, R. Brown, K. Jayaraman, and D. Bhattacharyya, Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity, Mater. Sci. Eng. B, 193(2015), p. 49. doi: 10.1016/j.mseb.2014.11.002
    [32]
    X.B. Meng, D.S. Geng, J. Liu, M.N. Banis, Y. Zhang, R.Y. Li, and X.L. Sun, Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites, J. Phys. Chem. C, 114(2010), No. 43, p. 18330. doi: 10.1021/jp105852h
    [33]
    M. Wojtoniszak, X.C. Chen, R.J. Kalenczuk, A. Wajda, J. Łapczuk, M. Kurzewski, M. Drozdzik, P.K. Chu, and E. Borowiak-Palen, Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide, Colloids Surf. B, 89(2012), p. 79. doi: 10.1016/j.colsurfb.2011.08.026
    [34]
    E.Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, and S.O. Kim, Noncovalent functionalization of graphene with end-functional polymers, J. Mater. Chem., 20(2010), No. 10, p. 1907. doi: 10.1039/b919074k
    [35]
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97(2006), No. 18, art. No. 187401. doi: 10.1103/PhysRevLett.97.187401
    [36]
    M.J. Allen, V.C. Tung, and R.B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev., 110(2010), No. 1, p. 132. doi: 10.1021/cr900070d
    [37]
    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud'homme, I.A. Aksay, and R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett., 8(2008), No. 1, p. 36. doi: 10.1021/nl071822y
    [38]
    F. Tuinstra and J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53(1970), No. 3, p. 1126. doi: 10.1063/1.1674108
    [39]
    C.T. Hsieh, B.H. Yang, and Y.F. Chen, Dye-sensitized solar cells equipped with graphene-based counter electrodes with different oxidation levels, Diam. Relat. Mater., 27-28(2012), p. 68. doi: 10.1016/j.diamond.2012.06.002
    [40]
    S. Park and R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol., 4(2009), No. 4, p. 217. doi: 10.1038/nnano.2009.58
    [41]
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45(2007), No. 7, p. 1558. doi: 10.1016/j.carbon.2007.02.034
    [42]
    I.K. Moon, J. Lee, R.S. Ruoff, and H. Lee, Reduced graphene oxide by chemical graphitization, Nat. Commun., 1(2010), art. No. 73. doi: 10.1038/ncomms1067
    [43]
    H.K. Jeong, M.H. Jin, K.P. So, S.C. Lim, and Y.H. Lee, Tailoring the characteristics of graphite oxides by different oxidation times, J. Phys. D: Appl. Phys., 42(2009), No. 6, art. No. 065418. doi: 10.1088/0022-3727/42/6/065418
    [44]
    J.F. Shen, Y.Z. Hu, M. Shi, N. Li, H.W. Ma, and M.X. Ye, One step synthesis of graphene oxide–magnetic nanoparticle composite, J. Phys. Chem. C, 114(2010), No. 3, p. 1498. doi: 10.1021/jp909756r
    [45]
    M. Eizenberg and J.M. Blakely, Carbon monolayer phase condensation on Ni(111), Surf. Sci., 82(1979), No. 1, p. 228. doi: 10.1016/0039-6028(79)90330-3
    [46]
    D.S. Sutar, G. Singh, and V. Divakar Botcha, Electronic structure of graphene oxide and reduced graphene oxide monolayers, Appl. Phys. Lett., 101(2012), No. 10, art. No. 103103. doi: 10.1063/1.4749841
    [47]
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, The structure of suspended graphene sheets, Nature, 446(2007), No. 7131, p. 60. doi: 10.1038/nature05545
    [48]
    G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol., 3(2008), No. 5, p. 270. doi: 10.1038/nnano.2008.83
    [49]
    C.H. An Wong and M. Pumera, Highly conductive graphene nanoribbons from the reduction of graphene oxide nanoribbons with lithium aluminium hydride, J. Mater. Chem. C, 2(2014), No. 5, p. 856. doi: 10.1039/C3TC31688B
    [50]
    H.L. Wang, J.T. Robinson, X.L. Li, and H.J. Dai, Solvothermal reduction of chemically exfoliated graphene sheets, J. Am. Chem. Soc., 131(2009), No. 29, p. 9910. doi: 10.1021/ja904251p
    [51]
    D.C. Wei, Y.Q. Liu, Y. Wang, H.L. Zhang, L.P. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett., 9(2009), No. 5, p. 1752. doi: 10.1021/nl803279t
    [52]
    D. Erçin, M. Eken, Z. Aktas, S. Çetinkaya, B. Sakintuna, and Y. Yürüm, Effect of γ-irradiation on the structure of activated carbons produced from Turkish Elbistan lignite, Radiat. Phys. Chem., 73(2005), No. 5, p. 263. doi: 10.1016/j.radphyschem.2004.09.025
    [53]
    Q.L. Du, M.B. Zheng, L.F. Zhang, Y.W. Wang, J.H. Chen, L.P. Xue, W.J. Dai, G.B. Ji, and J.M. Cao, Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors, Electrochim. Acta, 55(2010), No. 12, p. 3897. doi: 10.1016/j.electacta.2010.01.089
    [54]
    G.P. Xiong, C.Z. Meng, R.G. Reifenberger, P.P. Irazoqui, and T.S. Fisher, A review of graphene-based electrochemical microsupercapacitors, Electroanalysis, 26(2014), No. 1, p. 30. doi: 10.1002/elan.201300238
    [55]
    M.Y. Yu, B.Q. Xie, Y. Yang, Y. Zhang, Y. Chen, W.Y. Yu, S.S. Zhang, L.H. Lu, and D. Liu, Residual oxygen groups in nitrogen-doped graphene to enhance the capacitive performance, RSC Adv., 7(2017), No. 25, p. 15293. doi: 10.1039/C6RA28596A
    [56]
    D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, and T.J. Bandosz, Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors, Adv. Funct. Mater., 19(2009), No. 3, p. 438. doi: 10.1002/adfm.200801236
    [57]
    J. Yang and L.D. Zou, Graphene films of controllable thickness as binder-free electrodes for high performance supercapacitors, Electrochim. Acta, 130(2014), p. 791. doi: 10.1016/j.electacta.2014.03.077
    [58]
    L. Zhang, X. Yang, F. Zhang, G.K. Long, T.F. Zhang, K. Leng, Y.W. Zhang, Y. Huang, Y.F. Ma, M.T. Zhang, and Y.S. Chen, Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials, J. Am. Chem. Soc., 135(2013), No. 15, p. 5921. doi: 10.1021/ja402552h
    [59]
    Z.Y. Xiong, C.L. Liao, W.H. Han, and X.G. Wang, Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications, Adv. Mater., 27(2015), No. 30, p. 4469. doi: 10.1002/adma.201501983
    [60]
    J.S. Lee, S.I. Kim, J.C. Yoon, and J.H. Jang, Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor, ACS Nano, 7(2013), No. 7, p. 6047. doi: 10.1021/nn401850z
    [61]
    G.X. Luo, L.Z. Liu, J.F. Zhang, G.B. Li, B.L. Wang, and J.J. Zhao, Hole defects and nitrogen doping in graphene: Implication for supercapacitor applications, ACS Appl. Mater. Interfaces, 5(2013), No. 21, p. 11184. doi: 10.1021/am403427h
    [62]
    Z.H. Wen, X.C. Wang, S. Mao, Z. Bo, H. Kim, S.M. Cui, G.H. Lu, X.L. Feng, and J.H. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor, Adv. Mater., 24(2012), No. 41, p. 5610. doi: 10.1002/adma.201201920
    [63]
    G. Moussa, C. Matei Ghimbeu, P.L. Taberna, P. Simon, and C. Vix-Guterl, Relationship between the carbon nano-onions (CNOs) surface chemistry/defects and their capacitance in aqueous and organic electrolytes, Carbon, 105(2016), p. 628. doi: 10.1016/j.carbon.2016.05.010
    [64]
    P. Song, X.Y. Zhang, M.X. Sun, X.L. Cui, and Y.H. Lin, Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide, RSC Adv., 2(2012), No. 3, p. 1168. doi: 10.1039/C1RA00934F
    [65]
    D. Majumdar, N. Baugh, and S.K. Bhattacharya, Ultrasound assisted formation of reduced graphene oxide-copper (II) oxide nanocomposite for energy storage applications, Colloids Surf. A, 512(2017), p. 158. doi: 10.1016/j.colsurfa.2016.10.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Share Article

    Article Metrics

    Article Views(3481) PDF Downloads(81) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return