Xiao-hui Ning, Chen-zheng Liao, and Guo-qing Li, Electrochemical properties of Ca–Pb electrode for calcium-based liquid metal batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1723-1729. https://doi.org/10.1007/s12613-020-2150-9
Cite this article as:
Xiao-hui Ning, Chen-zheng Liao, and Guo-qing Li, Electrochemical properties of Ca–Pb electrode for calcium-based liquid metal batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1723-1729. https://doi.org/10.1007/s12613-020-2150-9
Research Article

Electrochemical properties of Ca–Pb electrode for calcium-based liquid metal batteries

+ Author Affiliations
  • Corresponding author:

    Xiao-hui Ning    E-mail: xiaohuining@mail.xjtu.edu.cn

  • Received: 27 April 2020Revised: 17 July 2020Accepted: 20 July 2020Available online: 24 July 2020
  • The Ca–Pb electrode couple is considered to be one of the least expensive (~36 $/(kW·h)) among various optional materials for liquid–metal batteries (LMBs). The electrochemical properties of Ca–Pb alloy in a Ca|LiCl–NaCl–CaCl2|Pb cell were investigated in this paper. The electrode potential maintained a linear relationship in the current density range of 50–200 mA·cm−2, which indicates that the alloying and dealloying processes of Ca with Pb attained rapid charge transfer and mass transport in the interface between the liquid electrode and electrolyte. The Ca–Pb electrode exhibited remarkable properties with a high discharge voltage of 0.6 V, a small self-discharge current density (<2 mA·cm−2 at 600°C), and a high coulombic efficiency (>98.84%). The postmortem analysis showed that intermetallics CaPb3 and CaPb were uniformly distributed in the electrode with different molar fractions of Ca, which indicates that the nucleation of solid intermetallics did not hinder the diffusion of Ca in the electrode. This investigation on Ca–Pb electrode sheds light on the further research and the design of electrodes for Ca-based LMBs.

  • loading
  • [1]
    D.J. Bradwell, H.J. Kim, A.H.C. Sirk, and D.R. Sadoway, Magnesium-antimony liquid metal battery for stationary energy storage, J. Am. Chem. Soc., 134(2012), No. 4, p. 1895. doi: 10.1021/ja209759s
    [2]
    H.J. Kim, D.A. Boysen, J.M. Newhouse, B.L. Spatocco, B. Chung, P.J. Burke, D.J. Bradwell, J. Kai, A.A. Tomaszowska, K.L. Wang, W.F. Wei, L.A. Ortiz, S.A. Barriga, S.M. Poize-au, and D.R. Sadoway, Liquid metal batteries: Past, present, and future, Chem. Rev., 113(2013), No. 3, p. 2075. doi: 10.1021/cr300205k
    [3]
    X.H. Ning, S. Phadke, B. Chung, H.Y. Yin, P. Burke, and D.R. Sadoway, Self-healing Li-Bi liquid metal battery for grid-scale energy storage, J. Power Sources, 275(2015), p. 370. doi: 10.1016/j.jpowsour.2014.10.173
    [4]
    H.A. Laitinen, R.P. Tischer, and D.K. Roe, Exchange current measurements in KCl–LiCl eutectic melt, J. Electrochem. Soc., 107(1960), No. 6, p. 546. doi: 10.1149/1.2427740
    [5]
    A.D. Pasternak and D.R. Olander, Diffusion in liquid metals, AIChE J., 13(1967), No. 6, p. 1052. doi: 10.1002/aic.690130604
    [6]
    G.J. Janz and N.P. Bansal, Molten salts data: Diffusion coefficients in single and multi-component salt systems, J. Phys. Chem. Ref. Data, 11(1982), No. 3, p. 505. doi: 10.1063/1.555665
    [7]
    L. Kartal and S. Timur, Direct electrochmical reduction of copper sulfide in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 992. doi: 10.1007/s12613-019-1821-x
    [8]
    S.Q. Jiao and H. Zhu, Novel metallurgical process for titanium production, J. Mater. Res., 21(2006), No. 9, p. 2172. doi: 10.1557/jmr.2006.0268
    [9]
    T. Dai, L. Yang, X.H. Ning, D.L. Zhang, R.L. Narayan, J. Li, and Z.W. Shan, A low-cost intermediate temperature Fe/Graphite battery for grid-scale energy storage, Energy Storage Mater., 25(2020), p. 801. doi: 10.1016/j.ensm.2019.09.008
    [10]
    W. Zhao, P. Li, Z.W. Liu, D.L. He, K. Han, H.L. Zhao, and X.H. Qu, High-performance antimony-bismuth-tin positive electrode for liquid metal battery, Chem. Mater., 30(2018), No. 24, p. 8739. doi: 10.1021/acs.chemmater.8b01869
    [11]
    T. Dai, Y. Zhao, X.H. Ning, R.L. Narayan, J. Li, and Z.W. Shan, Capacity extended bismuth-antimony cathode for high-performance liquid metal battery, J. Power Sources, 381(2018), p. 38. doi: 10.1016/j.jpowsour.2018.01.048
    [12]
    K.L. Wang, K. Jiang, B. Chung, T. Ouchi, P.J. Burke, D.A. Boysen, D.J. Bradwell, H.J. Kim, U. Muecke, and D.R. Sadoway, Lithium antimony-lead liquid metal battery for grid-level energy storage, Nature, 514(2014), No. 7522, p. 348. doi: 10.1038/nature13700
    [13]
    H.M. Li, K.L. Wang, S.J. Cheng, and K. Jiang, High performance liquid metal battery with environmentally friendly antimony-tin positive electrode, ACS Appl. Mater. Interfaces, 8(2016), No. 20, p. 12830. doi: 10.1021/acsami.6b02576
    [14]
    H.M. Li, K.L. Wang, H. Zhou, X.L. Guo, S.J. Cheng, and K. Jiang, Tellurium-tin based electrodes enabling liquid metal batteries for high specific energy storage applications, Energy Storage Mater., 14(2018), p. 267. doi: 10.1016/j.ensm.2018.04.017
    [15]
    S. Poizeau, H.J. Kim, J.M. Newhouse, B.L. Spatocco, and D.R. Sadoway, Determination and modeling of the thermodynamic properties of liquid calcium-antimony alloys, Electrochim. Acta, 76(2012), p. 8. doi: 10.1016/j.electacta.2012.04.139
    [16]
    T. Ouchi, H.J. Kim, X.H. Ning, and D.R. Sadoway, Calcium-antimony alloys as electrodes for liquid metal batteries, J. Electrochem. Soc., 161(2014), No. 12, p. A1898. doi: 10.1149/2.0801412jes
    [17]
    H.J. Kim, D.A. Boysen, D.J. Bradwell, B. Chung, K. Jiang, A.A. Tomaszowska, K.L. Wang, W.F. Wei, and D.R. Sadoway, Thermodynamic properties of calcium-bismuth alloys determined by emf measurements, Electrochim. Acta, 60(2012), p. 154. doi: 10.1016/j.electacta.2011.11.023
    [18]
    H.J. Kim, D.A. Boysen, T. Ouchi, and D.R. Sadoway, Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries), J. Power Sources, 241(2013), p. 239. doi: 10.1016/j.jpowsour.2013.04.052
    [19]
    R.A. Sharma, The solubilities of calcium in liquid calcium chloride in equilibrium with calcium-copper alloys, J. Phys. Chem., 74(1970), No. 22, p. 3896. doi: 10.1021/j100716a009
    [20]
    N.D. Smith, N.E. Orabona, J.P.S. Palma, Y.R. Kong, C. Blanchard, and H.J. Kim, Thermodynamic properties of Ca–Pb electrodes determined by electromotive force measurements, J. Power Sources, 451(2020), art. No. 227745. doi: 10.1016/j.jpowsour.2020.227745
    [21]
    M. Idbenalia, C. Servantb, N. Selhaouia, and L. Bouirdena, A thermodynamic reassessment of the Ca–Pb system, Calphad, 32(2008), No. 1, p. 64. doi: 10.1016/j.calphad.2007.10.004
    [22]
    C.J. Wen, B.A. Boukamp, R.A. Huggins, and W. Weppner, Thermodynamic and mass tra-nsport properties of “LiAl”, J. Electrochem. Soc., 126(1979), No. 12, p. 2258. doi: 10.1149/1.2128939
    [23]
    A.S. Dworkin, H.R. Bronstein, and M.A. Bredig, The electrical conductivity of solutions of metals in their molten halides. VIII. Alkaline earth metal systems, J. Phys. Chem., 70(1966), No. 7, p. 2384. doi: 10.1021/j100879a048
    [24]
    M. Okada, R.A. Guidotti, and J.D. Corbett, Solution of sodium alloys of some post-tra-nsition metals in molten sodium halides. Evidence for anions of bismuth and antimony, Inorg. Chem., 7(1968), No. 10, p. 2118. doi: 10.1021/ic50068a035
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(2558) PDF Downloads(56) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return