Sadia Ilyas, Rajiv Ranjan Srivastava,  and Hyunjung Kim, Liquid–liquid extraction of phosphorus from sulfuric acid solution using benzyl dimethyl amine, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 367-372. https://doi.org/10.1007/s12613-020-2151-8
Cite this article as:
Sadia Ilyas, Rajiv Ranjan Srivastava,  and Hyunjung Kim, Liquid–liquid extraction of phosphorus from sulfuric acid solution using benzyl dimethyl amine, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 367-372. https://doi.org/10.1007/s12613-020-2151-8
Research Article

Liquid–liquid extraction of phosphorus from sulfuric acid solution using benzyl dimethyl amine

+ Author Affiliations
  • Corresponding author:

    Hyunjung Kim    E-mail: kshjkim@jbnu.ac.kr

  • Received: 18 May 2020Revised: 5 July 2020Accepted: 21 July 2020Available online: 24 July 2020
  • This study addresses the liquid–liquid extraction behavior of phosphorus from a sulfuric acid solution using benzyl dimethyl amine (BDMA) in kerosene. The extraction equilibria investigated with varied BDMA concentrations could reveal the formation of

    \begin{document}$\overline {3\left[ {{\rm{BDMA}}} \right] \cdot \left[ {{{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4}} \right]} $\end{document}

    complex in the organic phase. The thermodynamic properties determined at various temperatures indicated that the process was exothermic with a calculated enthalpy (

    $\Delta {H^ \ominus }$

    ) of −24.0 kJ·mol−1. The organic-to-aqueous phase (O/A) volume ratio was varied to elucidate the quantitative extraction of phosphorus. The McCabe–Thiele diagram plotted for the extraction isotherm was validated for the requirement of three counter-current stages in the extraction at an O/A volume ratio of 2.0/3.5. The back-extraction of phosphorus from the loaded organic phase was quantitatively achieved by contacting 4.0 mol·L−1 H2SO4 solution in three stages of counter-current contact at an O/A volume ratio of 3/2. This study can be applied to remove phosphorus from the sulfuric acid leach solutions of monazite processing, and many other solutions.

  • loading
  • [1]
    E.H. Borai, M.S. Abd El-Ghany, I.M. Ahmed, M.M. Hamed, A.M. Shahr EI-Din, and H.F. Aly, Modified acidic leaching for selective separation of thorium phosphate and rare earth concentrates from Egyptian crude monazite, Int. J. Miner. Process., 149(2016), p. 34. doi: 10.1016/j.minpro.2016.02.003
    [2]
    M.S. Alshammari, I.M. Ahmed, A.A. Nayl, H.F. Aly, G.G. Mohamed, and S.A.R. Mostafa, An assessment for the recovery of lanthanides and P2O5 from phosphate rocks, Adv. Environ. Biol., 10(2016), No. 9, p. 49.
    [3]
    Y. Kanazawa and M. Kamitani, Rare earth minerals and resources in the world, J. Alloys Compd., 408–412(2006), p. 1339.
    [4]
    Y.A. El-Nadi, J.A. Daoud, and H.F. Aly, Modified leaching and extraction of uranium from hydrous oxide cake of Egyptian monazite, Int. J. Miner. Process., 76(2005), No. 1-2, p. 101. doi: 10.1016/j.minpro.2004.12.005
    [5]
    L. Zhang, J. Chen, W.Q. Jin, Y.F. Deng, J. Tian, and Y. Zhang, Extraction mechanism of cerium (IV) in H2SO4/H3PO4 system using bifunctional ionic liquid extractants, J. Rare Earths, 31(2013), No. 12, p. 1195. doi: 10.1016/S1002-0721(12)60426-8
    [6]
    D. Zou, J. Chen, and D.Q. Li, Separation chemistry and clean technique of cerium (IV): A review, J. Rare Earths, 32(2014), No. 8, p. 681. doi: 10.1016/S1002-0721(14)60125-3
    [7]
    Environmental Agency, Aquatic eutrophication in England and Wales: Proposed management strategy, [in] Environmental Issue Series, Environmental Agency, Bristol, 2003.
    [8]
    S. Burk, A.L. Heathwaite and N. Preedy, Transfer of phosphorus to surface waters: Eutrophication, [in] Phosphorusin Environmental Technologies Principles and Applications, IWA Publishing, London, 2004, p. 120.
    [9]
    J.Q. Jiang and Q. Mwabonje, Phosphorus recovery by liquid–liquid extraction, Sep. Sci. Technol., 44(2009), No. 13, p. 3258. doi: 10.1080/01496390903183204
    [10]
    M. Yang, Q.S. Zhu, C.L. Fan, Z.H. Xie, and H.Z. Li, Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 346. doi: 10.1007/s12613-015-1079-x
    [11]
    J.Q. Jiang and N.J.D. Graham, Pre-polymerised inorganic coagulants and phosphorus removal by coagulation - A review, Water SA, 24(1998), No. 3, p. 237.
    [12]
    U. Berg and C. Schaum, Recovery of phosphorus from sewage sludge and sludge ashes - Application in Germany and Northern Europe, [in] Proceedings of the I. National Sludge Symposium, Izmirs, 2005, p. 87.
    [13]
    G. Tchobanoglous and F.L. Burton, Wastewater Engineering—Treatment, Disposal and Reuse, 4th ed., Metcalf and Eddy, Inc., eds., McGraw Hill, New York, 2003.
    [14]
    R.R. Srivastava, S. Ilyas, H. Kim, S. Choi, H.B. Trinh, M.A. Ghauri, and N. Ilyas, Biotechnological recycling of critical metals from waste printed circuit boards, J. Chem. Technol. Biotechnol., 95(2020), No. 11, p. 2796. doi: 10.1002/jctb.6469
    [15]
    M.A. Muhsan, S. Ilyas, H.A. Cheema, S. Masud, and N. Shabbir, Recovery of nitric acid from effluent streams using solvent extraction with TBP: A comparative study in absence and presence of metal nitrates, Sep. Purif. Technol., 186(2017), p. 90. doi: 10.1016/j.seppur.2017.05.058
    [16]
    G.M. Ritcey and A.W. Ashbrook, Solvent Extraction. Principles and Applications to Process Metallurgy, Part I, Elsevier, Amsterdam, 1984.
    [17]
    R.X. Mu, J. Chen, D. Zou, K. Li, and D.Q. Li, Liquid-liquid extraction and recovery of Cerium (IV) and Phosphorus from sulfuric acid solution using Cyanex 923, Sep. Purif. Technol., 209(2019), p. 351. doi: 10.1016/j.seppur.2018.07.008
    [18]
    O.N. Mwabonje and J.L. Jiang, A trial of using solvent extraction for phosphorus recovery, J. Water Res. Prot., 2(2010), No. 9, p. 830. doi: 10.4236/jwarp.2010.29098
    [19]
    J.A. Rard and T.J. Wolery, The standard chemical-thermodynamic properties of phosphorus and some of its key compounds and aqueous species: An evaluation of differences between the previous recommendations of NBS/NIST and CODATA, J. Solution Chem., 36(2007), No. 12, p. 1585.
    [20]
    D.D. Wagman, W.H. Evans, V.B. Parker, I. Halow, S.M. Bailey, and R.H. Schumm, Selected Values of Chemical Thermodynamic Properties, Tables for the First Thirty-Four Elements in the Standard Order of Arrangement, NBS Technical Note 270-3, U.S. Government Printing Office, Washington, 1968.
    [21]
    M. Cox, Solvent extraction in hydrometallurgy, [in] Solvent Extraction Principles and Practice, Revised and Expanded, CRC Press, New York, 2004, p. 466.
    [22]
    R.R. Srivastava, S. Ilyas, H. Kim, N.L.M. Tri, N. Hassan, M. Mudassir, and N. Talib, Liquid–liquid extraction and reductive stripping of chromium to valorize industrial effluent, JOM, 72(2020), No. 2, p. 839. doi: 10.1007/s11837-019-03948-0
    [23]
    Y. Marcus, Solvent extraction of inorganic species, Chem. Rev., 63(1963), No. 2, p. 139. doi: 10.1021/cr60222a004
    [24]
    V.S. Kislik, Solvent Extraction: Classical and Novel Approaches, 1st ed., Elsevier, Amsterdam, 2011.
    [25]
    D.L. Pavia, G.M. Lampman, G.S. Kriz, and J.R. Vyvyan, Introduction of Spectroscopy, Brooks/Cole Cengage Learning, Belmont, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2643) PDF Downloads(85) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return