Yuhui Liu, Meng Tang, Shuang Zhang, Yuling Lin, Yingcai Wang, Youqun Wang, Ying Dai, Xiaohong Cao, Zhibin Zhang, and Yunhai Liu, U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp.479-489. https://dx.doi.org/10.1007/s12613-020-2154-5
Cite this article as: Yuhui Liu, Meng Tang, Shuang Zhang, Yuling Lin, Yingcai Wang, Youqun Wang, Ying Dai, Xiaohong Cao, Zhibin Zhang, and Yunhai Liu, U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp.479-489. https://dx.doi.org/10.1007/s12613-020-2154-5

U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method

  • To improve the separation capacity of uranium in aqueous solutions, 3R-MoS2 nanosheets were prepared with molten salt electrolysis and further modified with polypyrrole (PPy) to synthesize a hybrid nanoadsorbent (PPy/3R-MoS2). The preparation conditions of PPy/3R-MoS2 were investigated and the obtained nanosheets were characterized with scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS). The results showed that PPy/3R-MoS2 exhibited enhanced adsorption capacity toward U(VI) compared to pure 3R-MoS2 and PPy; the maximum adsorption was 200.4 mg/g. The adsorption mechanism was elucidated with XPS and FTIR: (1) negatively charged PPy/3R-MoS2 nanosheets attracted \rmUO_2^2 + by an electrostatic interaction; (2) exposed C, N, Mo, and S atoms complexed with U(VI) through coordination; (3) Mo in the complex partly reduced the adsorbed U(VI) to U(IV), which further regenerated the adsorption point and continuously adsorbed U(VI). The design of the PPy/3R-MoS2 composite with a high adsorption capacity and chemical stability provides a new direction for the removal of radionuclide.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return