Li-yuan Liu, Hong-guang Ji, Xiang-feng Lü, Tao Wang, Sheng Zhi, Feng Pei, and Dao-lu Quan, Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 513-521.
Cite this article as:
Li-yuan Liu, Hong-guang Ji, Xiang-feng Lü, Tao Wang, Sheng Zhi, Feng Pei, and Dao-lu Quan, Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 513-521.
Invited Review

Mitigation of greenhouse gases released from mining activities: A review

+ Author Affiliations
  • Climate changes that occur as a result of global warming caused by increasing amounts of greenhouse gases (GHGs) released into the atmosphere are an alarming issue. Controlling greenhouse gas emissions is critically important for the current and future status of mining activities. The mining industry is one of the significant contributors of greenhouse gases. In essence, anthropogenic greenhouse gases are emitted directly during the actual mining and indirectly released by the energy-intensive activities associated with mining equipment, ore transport, and the processing industry. Therefore, we reviewed both direct and indirect GHG emissions to analyze how mining contributes to climate change. In addition, we showed how climate change impacts mineral production. This assessment was performed using a GHG inventory model for the gases released from mines undergoing different product life cycles. We also elucidate the key issues and various research outcomes to demonstrate how the mining industry and policymakers can mitigate GHG emission from the mining sector. The review concludes with an overview of GHG release reduction and mitigation strategies.
  • loading
  • [1]
    J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R.D. Srivastava, Advances in CO2 capture technology—The U.S. department of energy’s carbon sequestration program, Int. J. Greenhouse Gas Control, 2(2008), No. 1, p. 9. doi: 10.1016/S1750-5836(07)00094-1
    S. Peralta, A.P. Sasmito, and M. Kumral, Reliability effect on energy consumption and greenhouse gas emissions of mining hauling fleet towards sustainable mining, J. Sustainable Min., 15(2016), No. 3, p. 85. doi: 10.1016/j.jsm.2016.08.002
    N. Mirovitskaya and W.L. Ascher, Guide to Sustainable Development and Environmental Policy, Duke University Press, Durham, NC, 2002.
    T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, B. Jamsranjav, M. Fukuda, and T. Troxler, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, the Intergovernmental Panel on Climate Change, Switzerland, 2014.
    M. Meinshausen, N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, and M.R. Allen, Greenhouse-gas emission targets for limiting global warming to 2°C, Nature, 458(2009), No. 7242, p. 1158. doi: 10.1038/nature08017
    International Energy Agency, Beyond Kyoto: Energy Dynamics and Climate Stabilisation, OECD Publishing, Paris, 2002.
    X.L. Wang, J.C. Chow, S.D. Kohl, K.E. Percy, A.H. Legge, and J.G. Watson, Real-world emission factors for Caterpillar 797B heavy haulers during mining operations, Particuology, 28(2016), p. 22. doi: 10.1016/j.partic.2015.07.001
    M. Tuusjärvi, I. Mäenpää, S. Vuori, P. Eilu, S. Kihlman, and S. Koskela, Metal mining industry in Finland – Development scenarios to 2030, J. Cleaner Prod., 84(2014), p. 271. doi: 10.1016/j.jclepro.2014.03.038
    National Bureau of Statistics of China [2020-07-15].
    G.M. Mudd, The environmental sustainability of mining in Australia: Key mega-trends and looming constraints, Resour. Policy, 35(2010), No. 2, p. 98. doi: 10.1016/j.resourpol.2009.12.001
    M. Davarazar, D. Jahanianfard, Y. Sheikhnejad, B. Nemati, A. Mostafaie, S. Zandi, M. Khalaj, M. Kamali, and T.M. Aminabhavi, Underground carbon dioxide sequestration for climate change mitigation – A scientometric study, J. CO2 Util., 33(2019), p. 179. doi: 10.1016/j.jcou.2019.05.022
    R. Irarrázabal, Mining and climate change: Towards a strategy for the industry, J. Energy Nat. Resour. Law, 24(2006), No. 3, p. 403. doi: 10.1080/02646811.2006.11433444
    B. McDonald and Neil Hawke, Environmental Policy: Implementation and enforcement, Int. Environ. Agreements Polit. Law Econ., 3(2005), No. 3, p. 293.
    A.J. Bradbrook, R. Lyster, R.L. Ottinger, and X. Wang, The Law of Energy for Sustainable Development, Cambridge University Press, Cambridge, 2005.
    E.D.C. Rodovalho and G. de Tomi, Simulation of the impact of mine face geometry on the energy efficiency of short-distance haulage mining operations, Min. Technol., 125(2016), No. 4, p. 226. doi: 10.1080/14749009.2016.1170990
    E. Worrell, L. Price, N. Martin, C. Hendriks, and L.O. Meida, Carbon dioxide emissions from the global cement industry, Ann. Rev. Energy Env., 26(2001), p. 303. doi: 10.1146/
    M.I. Attalla, S.J. Day, T. Lange, W. Lilley, and S. Morgan, NOx emissions from blasting operations in open-cut coal mining, Atmos. Environ., 42(2008), No. 34, p. 7874. doi: 10.1016/j.atmosenv.2008.07.008
    B. Pandey, M. Gautam, and M. Agrawal, Greenhouse gas emissions from coal mining activities and their possible mitigation strategies, [in] S.S. Muthu, ed., Environmental Carbon Footprints: Industrial Case Studies, Elsevier, Oxford, 2018, p. 259.
    J.D.N. Pone, K.A.A. Hein, G.B. Stracher, H.J. Annegarn, R.B. Finkleman, D.R. Blake, J.K. McCormack, and P. Schroeder, The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa, Int. J. Coal Geol., 72(2007), No. 2, p. 124. doi: 10.1016/j.coal.2007.01.001
    R.B. Finkelman, Potential health impacts of burning coal beds and waste banks, Int. J. Coal Geol., 59(2004), No. 1-2, p. 19. doi: 10.1016/j.coal.2003.11.002
    D.A. Kirchgessner, S.D. Piccot, and S.S. Masemore, An improved inventory of methane emissions from coal mining in the United States, J. Air Waste Manage. Assoc., 50(2000), No. 11, p. 1904. doi: 10.1080/10473289.2000.10464227
    Y.W. Ju, Y. Sun, Z.Y. Sa, J.N. Pan, J.L. Wang, Q.L. Hou, Q.G. Li, Z.F. Yan, and J. Liu, A new approach to estimate fugitive methane emissions from coal mining in China, Sci. Total Environ., 543(2016), p. 514. doi: 10.1016/j.scitotenv.2015.11.024
    United States Environmental Protection Agency, Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2030 [2012-12-31].
    P. Franklin, Methane from Coal Mines Presents Opportunity to Recover Energy and Generate Revenues, Oilfield Technology [2009-09-30].
    S. Su, J.Y. Han, J.Y. Wu, H.J. Li, R. Worrall, H. Guo, X. Sun, and W.G. Liu, Fugitive coal mine methane emissions at five mining areas in China, Atmos. Environ., 45(2011), No. 13, p. 2220. doi: 10.1016/j.atmosenv.2011.01.048
    A. Soofastaei, S.M. Aminossadati, M.S. Kizil, and P. Knights, Simulation of payload variance effects on truck bunching to minimise energy consumption and greenhouse gas emissions, [in] The 15th Coal Operators’ Conference, University of Wollongong, Wollongong, 2015, p. 337.
    T. Norgate and N. Haque, Energy and greenhouse gas impacts of mining and mineral processing operations, J. Cleaner Prod., 18(2010), No. 3, p. 266. doi: 10.1016/j.jclepro.2009.09.020
    D. Paraskevas, K. Kellens, A.V.D. Voorde, W. Dewulf, and J.R. Duflou, Environmental impact analysis of primary aluminium production at country level, Procedia CIRP, 40(2016), p. 209. doi: 10.1016/j.procir.2016.01.104
    M.G. da Silva, A.R.C. Muniz, R. Hoffmann, and A.C.L. Lisbôa, Impact of greenhouse gases on surface coal mining in Brazil, J. Cleaner Prod., 193(2018), p. 206. doi: 10.1016/j.jclepro.2018.05.076
    S.D. Odell, A. Bebbington, and K.E. Frey, Mining and climate change: A review and framework for analysis, Extr. Ind. Soc., 5(2018), No. 1, p. 201.
    L. Li, Y.L. Lei, and D.Y. Pan, Study of CO2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment, Nat. Hazard., 81(2016), No. 2, p. 957. doi: 10.1007/s11069-015-2114-y
    J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J.T. Turnure, and L. Westfall, International Energy Outlook 2016: With Projections to 2040, Technical Report, U.S. Energy Information Administration, Washington, 2016.
    United States Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks [2020-03-10].
    P. van Dijk, C. Kuenzer, J.Z. Zhang, K.H. Wolf, and J. Wang, Scientific Assessment and Policy Analysis: Fossil Fuel Deposit Fires: Occurrence Inventory, Design and Assessment of Instrumental Options, Netherlands Research Programme on Scientific Assessment and Policy Analsisfor Climate Change (WAB), the Netherlands, 2009.
    J.F. Zhang and K.R. Smith, Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions, Environ. Health Perspect., 115(2007), No. 6, p. 848. doi: 10.1289/ehp.9479
    A. Restrepo, E. Bazzo, and R. Miyake, A life cycle assessment of the Brazilian coal used for electric power generation, J. Cleaner Prod., 92(2015), p. 179. doi: 10.1016/j.jclepro.2014.12.065
    Y. Gan and W.M. Griffin, Analysis of life-cycle GHG emissions for iron ore mining and processing in China—Uncertainty and trends, Resour. Policy, 58(2018), p. 90. doi: 10.1016/j.resourpol.2018.03.015
    L.Y. Liu, H.G. Ji, D. Elsworth, S. Zhi, X.F. Lv, and T. Wang, Dual-damage constitutive model to define thermal damage in rock, Int. J. Rock Mech. Min. Sci., 126(2020), art. No. 104185. doi: 10.1016/j.ijrmms.2019.104185
    K. Parameswaran, Sustainability considerations in innovative process development, [in] V.L. Lakshmanan, R. Roy, and V. Ramachandran, eds., Innovative Process Development in Metallurgical Industry, Springer, Cham, 2016, p. 257.
    Z.Y. Ma and P.G. Ranjith, Review of application of molecular dynamics simulations in geological sequestration of carbon dioxide, Fuel, 255(2019), art. No. 115644. doi: 10.1016/j.fuel.2019.115644
    L. Liu, Damage Mechanics Model for Dual Porosity Medium and Its Application on Hydraulic Fracturing [Dissertation], Northeastern University, Shenyang, 2018.
    L.M. Qiu, D.Z. Song, X.Q. He, E.Y. Wang, Z.L. Li, S. Yin, M.H. Wei, and Y. Liu, Multifractal of electromagnetic waveform and spectrum about coal rock samples subjected to uniaxial compression, Fractals, 28(2020), No. 4, art. No. 2050061. doi: 10.1142/S0218348X20500619
    L.Y. Liu, W.C. Zhu, C.H. Wei, and X.H. Ma, Mechanical model and numerical analysis of mechanical property alterations of coal induced by gas adsorption, Rock Soil Mech., 39(2018), No. 4, p. 1500.
    S. Zhi, D. Elsworth, and L.Y. Liu, W-shaped permeability evolution of coal with supercritical CO2 phase transition, Int. J. Coal Geol., 211(2019), art. No. 103221. doi: 10.1016/j.coal.2019.103221
    L.Y. Liu, W.C. Ma, and W.D. Wang, Dual damage mechanism of supercritical CO2 adsorption-induced weakening effect on coal, J. Shandong Univ. Sci. Technol. (Nat. Sci.), 39(2020), No. 4, p. 79.
    C.S. Zheng, Z.W. Chen, M. Kizil, S. Aminossadati, Q.L. Zou, and P.P. Gao, Characterisation of mechanics and flow fields around in-seam methane gas drainage borehole for preventing ventilation air leakage: A case study, Int. J. Coal Geol., 162(2016), p. 123. doi: 10.1016/j.coal.2016.06.008
    S.J. Schatzel, C.Ö. Karacan, H. Dougherty, and G.V.R. Goodman, An analysis of reservoir conditions and responses in longwall panel overburden during mining and its effect on gob gas well performance, Eng. Geol., 127(2012), p. 65. doi: 10.1016/j.enggeo.2012.01.002
    C.Ö. Karacan, F.A. Ruiz, M. Cotè, and S. Phipps, Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction, Int. J. Coal Geol., 86(2011), No. 2-3, p. 121. doi: 10.1016/j.coal.2011.02.009
    C.S. Zheng, B.Y. Jiang, S. Xue, Z.W. Chen, and H. Li, Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits: A review, Process Saf. Environ. Prot., 127(2019), p. 103. doi: 10.1016/j.psep.2019.05.010
    United States Environmental Protection Agency, Identifying Opportunities for Methane Recovery at U.S. Coal Mines: Profiles of Selected Gassy Underground Coal Mines 2002-2006 [2009-01-30].
    L.Y. Liu, W.C. Zhu, C.H. Wei, D. Elsworth, and J.H. Wang, Microcrack-based geomechanical modeling of rock–gas interaction during supercritical CO2 fracturing, J. Pet. Sci. Eng., 164(2018), p. 91. doi: 10.1016/j.petrol.2018.01.049
    B.L. Preston and R.N. Jones, Climate Change Impacts on Australia and the Benefits of Early Action to Reduce Global Greenhouse Gas Emissions, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria, 2006.
    C.M. White, D.H. Smith, K.L. Jones, A.L. Goodman, S.A. Jikich, R.B. LaCount, S.B. DuBose, E. Ozdemir, B.I. Morsi, and K.T. Schroeder, Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery – A review, Energy Fuels, 19(2005), No. 3, p. 659. doi: 10.1021/ef040047w
    S. Harpalani, B.K. Prusty, and P. Dutta, Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration, Energy Fuels, 20(2006), No. 4, p. 1591. doi: 10.1021/ef050434l
    M.J. Mavor, W.D. Gunter, J.R. Robinson, D.H.-S. Law, and J. Gale, Testing for CO2 sequestration and enhanced methane production from coal, [in] SPE Gas Technology Symposium, Calgary, 2002.
    W.C. Zhu, L.Y. Liu, J.S. Liu, C.H. Wei, and Y. Peng, Impact of gas adsorption-induced coal damage on the evolution of coal permeability, Int. J. Rock Mech. Min. Sci., 101(2018), p. 89. doi: 10.1016/j.ijrmms.2017.11.007
    J.Y. You, W. Ampomah, Q. Sun, E.J. Kutsienyo, R.S. Balch, Z.X. Dai, M. Cather, and X.Y. Zhang, Machine learning based co-optimization of carbon dioxide sequestration and oil recovery in CO2-EOR project, J. Cleaner Prod., 260(2020), art. No. 120866. doi: 10.1016/j.jclepro.2020.120866
    J.J. Dooley, R.T. Dahowski, C.L. Davidson, M.A. Wise, N. Gupta, S.H. Kim, and E.L. Malone, Carbon Dioxide Capture and Geologic Storage: A Core Element of a Global Energy Technology Strategy to Address Climate Change, Global Energy Technology Strategy Program, College Park, MD, 2006.
    S. Bachu, Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change, Energy Convers. Manage., 41(2000), No. 9, p. 953. doi: 10.1016/S0196-8904(99)00149-1
    O. Edenhofer, R. Pichs-Madruga, Y. Sokona, J.C. Minx, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, and T. Zwickel, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2014.
    M.C. Carbo, R. Smit, B. van der Drift, and D. Jansen, Bio energy with CCS (BECCS): Large potential for BioSNG at low CO2 avoidance cost, Energy Procedia, 4(2011), p. 2950. doi: 10.1016/j.egypro.2011.02.203
    M. Yellishetty, P.G. Ranjith, A. Tharumarajah, and S. Bhosale, Life cycle assessment in the minerals and metals sector: A critical review of selected issues and challenges, Int. J. Life Cycle Assess., 14(2009), No. 3, art. No. 257. doi: 10.1007/s11367-009-0060-1
    N. Suppen, M. Carranza, M. Huerta, and M.A. Hernández, Environmental management and life cycle approaches in the Mexican mining industry, J. Cleaner Prod., 14(2006), No. 12-13, p. 1101. doi: 10.1016/j.jclepro.2004.12.020
    T. Adachi and G. Mogi, Life cycle inventory for base metal ingots production in Japan including mining and mineral processing processes by cost estimating system database, Trans. Nonferrous Met. Soc. China, 17(2007), Suppl. 1, p. 131.
    S.J. Mangena and A.C. Brent, Application of a life cycle impact assessment framework to evaluate and compare environmental performances with economic values of supplied coal products, J. Cleaner Prod., 14(2006), No. 12-13, p. 1071. doi: 10.1016/j.jclepro.2004.04.012
    X.Y. Liang, Z.H. Wang, Z.J. Zhou, Z.Y. Huang, J.H. Zhou, and K.F. Cen, Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China, J. Cleaner Prod., 39(2013), p. 24. doi: 10.1016/j.jclepro.2012.08.003
    K. Awuah-Offei, D. Checkel, and H. Askari-Nasab, Valuation of belt conveyor and truck haulage systems in an open pit mine using life cycle assessment, CIM Bull., 102(2009), p. 1.
    R. Sada, Carbon Trading [Dissertation], HNB Garhwal University, Uttarakhand, 2007.
    F.T. Wang, T. Ren, S.H. Tu, F. Hungerford, and N. Aziz, Implementation of underground longhole directional drilling technology for greenhouse gas mitigation in Chinese coal mines, Int. J. Greenhouse Gas Control, 11(2012), p. 290. doi: 10.1016/j.ijggc.2012.09.006
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Share Article

    Article Metrics

    Article views (1625) PDF downloads(55) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint