Abhishek Pathak, Biswajyoti Mukherjee, Krishna Kant Pandey, Aminul Islam, Pavan Bijalwan, Monojit Dutta, Atanu Banerjee,  and Anup Kumar Keshri, Process–structure–property relationship for plasma-sprayed iron-based amorphous/crystalline composite coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 144-152. https://doi.org/10.1007/s12613-020-2171-4
Cite this article as:
Abhishek Pathak, Biswajyoti Mukherjee, Krishna Kant Pandey, Aminul Islam, Pavan Bijalwan, Monojit Dutta, Atanu Banerjee,  and Anup Kumar Keshri, Process–structure–property relationship for plasma-sprayed iron-based amorphous/crystalline composite coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 144-152. https://doi.org/10.1007/s12613-020-2171-4
Research Article

Process–structure–property relationship for plasma-sprayed iron-based amorphous/crystalline composite coatings

+ Author Affiliations
  • Corresponding author:

    Anup Kumar Keshri    E-mail: anup@iitp.ac.in

  • Received: 1 July 2020Revised: 14 August 2020Accepted: 25 August 2020Available online: 27 August 2020
  • This study explores the fabrication of Fe-based amorphous/crystalline coating by air plasma spraying and its dependency on the coating parameters (plasma power, primary gas flow rate, powder feed rate, and stand-off distance). X-ray diffraction of the coatings deposited at optimized spray parameters showed the presence of amorphous/crystalline phase. Coatings deposited at a lower plasma power and highest gas flow rate exhibited better density, hardness, and wear resistance. All coatings demonstrated equally good resistance against the corrosive environment (3.5wt% NaCl solution). Mechanical, wear, and tribological studies indicated that a single process parameter optimization cannot provide good coating performance; instead, all process parameters have a unique role in defining better properties for the coating by controlling the in-flight particle temperature and velocity profile, followed by the cooling pattern of molten droplet before impingement on the substrate.

  • loading
  • Supplementary Information s12613-020-2171-4.docx
  • [1]
    A.L. Greer, Metallic glasses, Science, 267(1995), No. 5206, p. 1947. doi: 10.1126/science.267.5206.1947
    [2]
    M.F. Ashby and A.L. Greer, Metallic glasses as structural materials, Scripta Mater., 54(2006), No. 3, p. 321. doi: 10.1016/j.scriptamat.2005.09.051
    [3]
    D.B. Miracle, A structural model for metallic glasses, Nat. Mater., 3(2004), No. 10, p. 697. doi: 10.1038/nmat1219
    [4]
    V. Ponnambalam, S.J. Poon, G.J. Shiflet, V.M. Keppens, R. Taylor, and G. Petculescu, Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys, Appl. Phys. Lett., 83(2003), No. 6, p. 1131. doi: 10.1063/1.1599636
    [5]
    C. Suryanarayana and A. Inoue, Iron-based bulk metallic glasses, Int. Mater. Rev., 58(2013), No. 3, p. 131. doi: 10.1179/1743280412Y.0000000007
    [6]
    X.J. Gu, S.J. Poon, and G.J. Shiflet, Mechanical properties of iron-based bulk metallic glasses, J. Mater. Res., 22(2007), No. 2, p. 344. doi: 10.1557/jmr.2007.0036
    [7]
    B.A. Sun and W.H. Wang, The fracture of bulk metallic glasses, Prog. Mater. Sci., 74(2015), p. 211. doi: 10.1016/j.pmatsci.2015.05.002
    [8]
    Y.C. Li, C. Zhang, W. Xing, S.F. Guo, and L. Liu, Design of Fe-based bulk metallic glasses with improved wear resistance, ACS Appl. Mater. Interfaces, 10(2018), No. 49, p. 43144. doi: 10.1021/acsami.8b11561
    [9]
    A. Kumar, R. Kumar, P. Bijalwan, M. Dutta, A. Banerjee, and T. Laha, Fe-based amorphous/nanocrystalline composite coating by plasma spraying: Effect of heat input on morphology, phase evolution and mechanical properties, J. Alloys Compd., 771(2019), p. 827. doi: 10.1016/j.jallcom.2018.09.024
    [10]
    J. Pan, Q. Chen, N. Li, and L. Liu, Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment, J. Alloys Compd., 463(2008), No. 1-2, p. 246. doi: 10.1016/j.jallcom.2007.09.124
    [11]
    Q.J. Chen, S.B. Guo, X.J. Yang, X.L. Zhou, X.Z. Hua, X.H. Zhu, and Z. Duan, Study on corrosion resistance of Fe-based amorphous coating by laser cladding in hydrochloric acid, Phys. Procedia, 50(2013), p. 297. doi: 10.1016/j.phpro.2013.11.048
    [12]
    A. Inoue, F.L. Kong, Q.K. Man, B.L. Shen, R.W. Li, and F. Al-Marzouki, Development and applications of Fe- and Co-based bulk glassy alloys and their prospects, J. Alloys Compd., 615(2014), p. S2. doi: 10.1016/j.jallcom.2013.11.122
    [13]
    J. Sort, D.C. Ile, A.P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Suriñach, J. Eckert, and M.D. Baró, Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion, Scripta Mater., 50(2004), No. 9, p. 1221. doi: 10.1016/j.scriptamat.2004.02.004
    [14]
    J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, and G. Wang, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy, Appl. Phys. Lett., 86(2005), No. 15, art. No. 151907. doi: 10.1063/1.1897426
    [15]
    H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, and Z.P. Lu, Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications, Prog. Mater. Sci., 103(2019), p. 235. doi: 10.1016/j.pmatsci.2019.01.003
    [16]
    Z. Zhou, L. Wang, D.Y. He, F.C. Wang, and Y.B. Liu, Microstructure and electrochemical behavior of Fe-based amorphous metallic coatings fabricated by atmospheric plasma spraying, J. Therm. Spray Technol., 20(2011), No. 1-2, p. 344. doi: 10.1007/s11666-010-9570-4
    [17]
    S. Kumar, J. Kim, H. Kim, and C. Lee, Phase dependence of Fe-based bulk metallic glasses on properties of thermal spray coatings, J. Alloys Compd., 475(2009), No. 1-2, p. L9. doi: 10.1016/j.jallcom.2008.07.064
    [18]
    C. Zhang, L. Liu, K.C. Chan, Q. Chen, and C.Y. Tang, Wear behavior of HVOF-sprayed Fe-based amorphous coatings, Intermetallics, 29(2012), p. 80. doi: 10.1016/j.intermet.2012.05.004
    [19]
    P. Fauchais, Understanding plasma spraying, J. Phys. D: Appl. Phys., 37(2004), No. 9, p. R86. doi: 10.1088/0022-3727/37/9/R02
    [20]
    R.Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, and L. Liu, Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF, Corros. Sci., 53(2011), No. 7, p. 2351. doi: 10.1016/j.corsci.2010.12.022
    [21]
    G.Y. Koga, R. Schulz, S. Savoie, A.R.C. Nascimento, Y. Drolet, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors, Surf. Coat. Technol., 309(2017), p. 938. doi: 10.1016/j.surfcoat.2016.10.057
    [22]
    C.Y. Zhang, Z.H. Chu, F.S. Wei, W.J. Qin, Y. Yang, Y.C. Dong, D. Huang, and L. Wang, Optimizing process and the properties of the sprayed Fe-based metallic glassy coating by plasma spraying, Surf. Coat. Technol., 319(2017), p. 1. doi: 10.1016/j.surfcoat.2017.03.063
    [23]
    Y.Z. Xing, Z. Liu, G. Wang, X.H. Li, C.P. Jiang, Y.N. Chen, Y. Zhang, X.D. Song, and M. Dargusch, Improvement of interfacial bonding between plasma-sprayed cast iron splat and aluminum substrate through preheating substrate, Surf. Coat. Technol., 316(2017), p. 190. doi: 10.1016/j.surfcoat.2017.03.032
    [24]
    P. Bijalwan, K.K. Pandey, B. Mukherjee, A. Islam, A. Pathak, M. Dutta, and A.K. Keshri, Tailoring the bimodal zone in plasma sprayed CNT reinforced YSZ coating and its impact on mechanical and tribological properties, Surf. Coat. Technol., 377(2019), art. No. 124870. doi: 10.1016/j.surfcoat.2019.07.081
    [25]
    R.S. Maurya, A. Sahu, and T. Laha, Quantitative phase analysis in Al86Ni8Y6 bulk glassy alloy synthesized by consolidating mechanically alloyed amorphous powder via spark plasma sintering, Mater. Des., 93(2016), p. 96. doi: 10.1016/j.matdes.2015.12.129
    [26]
    S. Khandanjou, M. Ghoranneviss, and S. Saviz, The investigation of the microstructure behavior of the spray distances and argon gas flow rates effects on the aluminum coating using self-generated atmospheric plasma spray system, J. Theor. Appl. Phys., 11(2017), No. 3, p. 225. doi: 10.1007/s40094-017-0256-x
    [27]
    A.R.M. Sahab, N.H. Saad, S. Kasolang, and J. Saedon, Impact of plasma spray variables parameters on mechanical and wear behaviour of plasma sprayed Al2O3 3%wt TiO2 coating in abrasion and erosion application, Procedia Eng., 41(2012), p. 1689. doi: 10.1016/j.proeng.2012.07.369
    [28]
    M.A. Moore and F.S. King, Abrasive wear of brittle solids, Wear, 60(1980), No. 1, p. 123. doi: 10.1016/0043-1648(80)90253-7
    [29]
    S. Ranjan, B. Mukherjee, A. Islam, K.K. Pandey, R. Gupta, and A.K. Keshri, Microstructure, mechanical and high temperature tribological behaviour of graphene nanoplatelets reinforced plasma sprayed titanium nitride coating, J. Eur. Ceram. Soc., 40(2020), No. 3, p. 660. doi: 10.1016/j.jeurceramsoc.2019.10.043
    [30]
    M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw Hill Book Co, New York, 1986.
    [31]
    C.A.C. Souza, D.V. Ribeiro, and C.S. Kiminami, Corrosion resistance of Fe–Cr-based amorphous alloys: An overview, J. Non Cryst. Solids, 442(2016), p. 56. doi: 10.1016/j.jnoncrysol.2016.04.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Share Article

    Article Metrics

    Article Views(3517) PDF Downloads(85) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return