Menghao Liu, Zhiyong Liu, Cuiwei Du, Xiaoqin Zhan, Xiaojia Yang, and Xiaogang Li, Stress corrosion cracking behavior of high-strength mooring-chain steel in the SO2-polluted coastal atmosphere, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp.1186-1196. https://dx.doi.org/10.1007/s12613-020-2192-z
Cite this article as: Menghao Liu, Zhiyong Liu, Cuiwei Du, Xiaoqin Zhan, Xiaojia Yang, and Xiaogang Li, Stress corrosion cracking behavior of high-strength mooring-chain steel in the SO2-polluted coastal atmosphere, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp.1186-1196. https://dx.doi.org/10.1007/s12613-020-2192-z

Stress corrosion cracking behavior of high-strength mooring-chain steel in the SO2-polluted coastal atmosphere

  • 21Cr2NiMo steel is widely used to stabilize offshore oil platforms; however, it suffers from stress-corrosion cracking (SCC). Herein, we studied the SCC behavior of 21Cr2NiMo steel in SO2-polluted coastal atmospheres. Electrochemical tests revealed that the addition of SO2 increased the corrosion current. Rust characterization showed that SO2 addition densified the corrosion products and promoted pitting. Furthermore, slow strain rate tests demonstrated a high susceptibility to SCC in high SO2 contents. Fracture morphologies revealed that the stress-corrosion cracks initiated at corrosion pits and the crack propagation showed transgranular and intergranular cracking modes. In conclusion, SCC is mix-controlled by anodic dissolution and hydrogen embrittlement mechanisms.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return