Yi-shuang Yu, Bin Hu, Min-liang Gao, Zhen-jia Xie, Xue-quan Rong, Gang Han, Hui Guo, and Cheng-jia Shang, Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 816-825. https://doi.org/10.1007/s12613-020-2235-5
Cite this article as:
Yi-shuang Yu, Bin Hu, Min-liang Gao, Zhen-jia Xie, Xue-quan Rong, Gang Han, Hui Guo, and Cheng-jia Shang, Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 816-825. https://doi.org/10.1007/s12613-020-2235-5
Research Article

Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel

+ Author Affiliations
  • Corresponding authors:

    Hui Guo    E-mail: guohui@mater.ustb.edu.cn

    Cheng-jia Shang    E-mail: cjshang@ustb.edu.cn

  • Received: 22 October 2020Revised: 29 November 2020Accepted: 2 December 2020Available online: 8 December 2020
  • Here we present a novel approach of intercritical heat treatment for microstructure tailoring, in which intercritical annealing is introduced between conventional quenching and tempering. This induced a heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite, resulting in a low yield ratio (YR) and high impact toughness in a high-strength low-alloy steel. The initial yielding and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing, in comparison to the steel with full martensitic microstructure. The increase in YR was related to the reduction in hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering. The excellent low-temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases, but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries.

  • loading
  • [1]
    Y.Q. Weng, C.F. Yang, and C.J. Shang, State-of-the-art and development trends of HSLA steels in China, Iron Steel, 46(2011), No. 9, p. 1.
    D.S. Liu, B.G. Cheng, and Y.Y. Chen, Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa, Metall. Mater. Trans. A, 44(2013), No. 1, p. 440. doi: 10.1007/s11661-012-1389-9
    S.K. Dhua, A. Ray, and D.S. Sarma, Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels, Mater. Sci. Eng. A, 318(2001), No. 1-2, p. 197. doi: 10.1016/S0921-5093(01)01259-X
    M.J. Sohrabi, H. Mirzadeh, M.S. Mehranpour, A. Heydarinia, and R. Razi, Aging kinetics and mechanical properties of copper-bearing low-carbon HSLA-100 microalloyed steel, Arch. Civ. Mech. Eng., 19(2019), No. 4, p. 1409. doi: 10.1016/j.acme.2019.09.001
    S.T. Wang, S.W. Yang, K.W. Gao, and X.L. He, Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning, Int. J. Miner. Metall. Mater., 16(2009), No. 1, p. 58. doi: 10.1016/S1674-4799(09)60010-8
    Y.J. Zhao, X.P. Ren, W.C. Yang, and Y. Zang, Design of a low-alloy high-strength and high-toughness martensitic steel, Int. J. Miner. Metall. Mater., 20(2013), No. 8, p. 733. doi: 10.1007/s12613-013-0791-7
    G. Krauss, Tempering of lath martensite in low and medium carbon steels: assessment and challenges, Steel Res. Int., 88(2017), No. 10, art. No. 1700038. doi: 10.1002/srin.201700038
    C.J. Tang, S.L. Liu, and C.J. Shang, Micromechanical behavior and failure mechanism of F/B multi-phase high performance steel, J. Iron Steel Res. Int., 23(2016), No. 5, p. 489. doi: 10.1016/S1006-706X(16)30077-2
    Y.M. Kim, S.K. Kim, and N.J. Kim, Simple method for tailoring the optimum microstructures of high-strength low-alloyed steels by the use of constitutive equation, Mater. Sci. Eng. A, 743(2019), p. 138. doi: 10.1016/j.msea.2018.11.058
    X.H. Li, Y.C. Liu, K.F. Gan, J. Dong, and C.X. Liu, Acquiring a low yield ratio well synchronized with enhanced strength of HSLA pipeline steels through adjusting multiple-phase microstructures, Mater. Sci. Eng. A, 785(2020), art. No. 139350. doi: 10.1016/j.msea.2020.139350
    W.S. Li, H.Y. Gao, Z.Y. Li, H. Nakashima, S. Hata, and W.H. Tian, Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process, Int. J. Miner. Metall. Mater., 23(2016), No. 3, p. 303. doi: 10.1007/s12613-016-1239-7
    X.L. Wu and Y.T. Zhu, Heterogeneous materials: A new class of materials with unprecedented mechanical properties, Mater. Res. Lett., 5(2017), No. 8, p. 527. doi: 10.1080/21663831.2017.1343208
    B. Gao, X.F. Chen, Z.Y. Pan, J.S. Li, Y. Ma, Y. Cao, M.P. Liu, Q.Q. Lai, L.R. Xiao, and H. Zhou, A high-strength heterogeneous structural dual-phase steel, J. Mater. Sci., 54(2019), p. 12898. doi: 10.1007/s10853-019-03785-1
    Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, and R.D.K. Misra, Recent progress in third-generation low alloy steels developed under M3 microstructure control, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 1. doi: 10.1007/s12613-019-1939-x
    Z.J. Xie, G. Han, Y.S. Yu, C.J. Shang, and R.D.K. Misra, The determining role of intercritical annealing condition on retained austenite and mechanical properties of a low carbon steel: Experimental and theoretical analysis, Mater. Charact., 153(2019), p. 208. doi: 10.1016/j.matchar.2019.05.010
    Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, and C.J. Shang, Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel, Mater. Des., 59(2014), p. 193. doi: 10.1016/j.matdes.2014.02.035
    B.G. Cheng, M. Luo, and D.S. Liu, High strength, low carbon, Cu containing steel plates with tailored microstructure and low yield ratio, Ironmaking Steelmaking, 42(2015), No. 8, p. 608. doi: 10.1179/1743281215Y.0000000010
    W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(1992), No. 6, p. 1564. doi: 10.1557/JMR.1992.1564
    Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim, Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels, ISIJ Int., 42(2002), No. 12, p. 1571. doi: 10.2355/isijinternational.42.1571
    X.G. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki, and T. Furuhara, Orientation of austenite reverted from martensite in Fe–2Mn–1.5Si–0.3C alloy, Acta Mater., 144(2018), p. 601. doi: 10.1016/j.actamat.2017.11.003
    S.F. Yuan, Z.J. Xie, J.L. Wang, L.H. Zhu, L. Yan, C.J. Shang, and R.D.K. Misra, Effect of heterogeneous microstructure on refining austenite grain size in low alloy heavy-gage plate, Metals, 10(2020), No. 1, p. 132. doi: 10.3390/met10010132
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 527(2010), No. 10-11, p. 2738. doi: 10.1016/j.msea.2010.01.004
    V. Vitek and F. Kroupa, Dislocation theory of slip geometry and temperature dependence of flow stress in BCC metals, Phys. Status Solidi B, 18(1966), No. 2, p. 703. doi: 10.1002/pssb.19660180222
    A. Bag and K.K. Ray, A new model to explain the unusual tensile behavior of high martensite dual-phase steels, Metall. Mater. Trans. A, 32(2001), No. 9, p. 2400. doi: 10.1007/s11661-001-0215-6
    U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: The FCC case, Prog. Mater Sci., 48(2003), No. 3, p. 171. doi: 10.1016/S0079-6425(02)00003-8
    G. Krauss, Steels: Processing, Structure, and Performance, 2nd ed., ASM International, Ohio, 2015, p. 373.
    C.Y. Chen, C.H. Li, T.C. Tsao, P.H. Chiu, S.P. Tsai, J.R. Yang, L.J. Chiang, and S.H. Wang, A novel technique for developing a dual-phase steel with a lower strength difference between ferrite and martensite, Mater. Today Commun., 23(2020), art. No. 100895. doi: 10.1016/j.mtcomm.2020.100895
    C.J. Tang, C.J. Shang, S.L. Liu, H.L. Guan, R.D.K. Misra, and Y.B. Chen, Effect of volume fraction of bainite on strain hardening behavior and deformation mechanism of F/B multi-phase steel, Mater. Sci. Eng. A, 731(2018), p. 173. doi: 10.1016/j.msea.2018.06.016
    H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solids, 1(1952), No. 1, p. 1. doi: 10.1016/0022-5096(52)90002-1
    J.H. Hollomon, Tensile deformation, Trans. Met. Soc. AIME, 162(1945), p. 268.
    S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim, Relationship between yield ratio and the material constants of the Swift equation, Met. Mater. Int., 12(2006), No. 2, art. No. 131. doi: 10.1007/BF03027468
    Y.C. Liu, L. Shi, C.X. Liu, L.M. Yu, Z.S. Yan, and H.J. Li, Effect of step quenching on microstructures and mechanical properties of HSLA steel, Mater. Sci. Eng. A, 675(2016), p. 371. doi: 10.1016/j.msea.2016.08.087
    G.H. Gao, H. Zhang, and B.Z. Bai, Effect of tempering temperature on low temperature impact toughness of a low carbon Mn-series bainitic steel, Acta Metall. Sin., 47(2011), No. 5, p. 513.
    B.B. Wu, Z.Q. Wang, X.L. Wang, W.S. Xu, C.J. Shang, and R.D.K. Misra, Toughening of martensite matrix in high strength low alloy steel: Regulation of variant pairs, Mater. Sci. Eng. A, 759(2019), p. 430. doi: 10.1016/j.msea.2019.05.030
    B.B. Wu, H. Chen, C.J. Shang, K.Y. Xie, and R.D.K. Misra, Effect of tempering mode on the microstructure and mechanical properties of a lean alloy martensitic steel: Conventional reheating versus induction reheating, J. Mater. Eng. Perform., 28(2019), p. 2807. doi: 10.1007/s11665-019-04072-5
    X.D. Li, Y.R. Fan, X.P. Ma, S.V. Subramanian, and C.J. Shang, Influence of martensite–austenite constituents formed at different intercritical temperatures on toughness, Mater. Des., 67(2015), p. 457. doi: 10.1016/j.matdes.2014.10.028
    X.D. Li, C.J. Shang, X.P. Ma, B. Gault, S.V. Subramanian, J.B. Sun, and R.D.K. Misra, Elemental distribution in the martensite–austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel, Scripta Mater., 139(2017), p. 67. doi: 10.1016/j.scriptamat.2017.06.017
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(992) PDF Downloads(66) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint