Li Wang, Chao-fang Dong, Cheng Man, Ya-bo Hu, Qiang Yu, and Xiao-gang Li, Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 754-773.
Cite this article as:
Li Wang, Chao-fang Dong, Cheng Man, Ya-bo Hu, Qiang Yu, and Xiao-gang Li, Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 754-773.
Invited Review

Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review

+ Author Affiliations
  • Corresponding author:

    Chao-fang Dong    E-mail:

  • Received: 29 May 2020Revised: 15 December 2020Accepted: 17 December 2020Available online: 19 December 2020
  • The high strength martensite steels are widely used in aerospace, ocean engineering, etc., due to their high strength, good ductility and acceptable corrosion resistance. This paper provides a review for the influence of microstructure on corrosion behavior of high strength martensite steels. Pitting is the most common corrosion type of high strength stainless steels, which always occurs at weak area of passive film such as inclusions, carbide/intermetallic interfaces. Meanwhile, the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion. The precipitation, dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps, leading to hydrogen embrittlement and stress corrosion cracking for high strength martensite steels. Yet, the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for high strength martensite steels. Finally, the corrosion mechanisms of additive manufacturing high strength steels and the ideas for designing new high strength martensite steel are explored.

  • loading
  • [1]
    Y.P. Zhang, D.P. Zhan, X.W. Qi, and Z.H. Jiang, Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel, Mater. Charact., 144(2018), p. 393. doi: 10.1016/j.matchar.2018.07.038
    Z.M. Wang, H. Li, Q. Shen, W.Q. Liu, and Z.Y. Wang, Nano-precipitates evolution and their effects on mechanical properties of 17-4 precipitation-hardening stainless steel, Acta Mater., 156(2018), p. 158. doi: 10.1016/j.actamat.2018.06.031
    S.V. Ravitej, M. Murthy, and M. Krishnappa, Review paper on optimization of process parameters in turning custom 465® precipitation hardened stainless steel, Mater. Today: Proceedings, 5(2018), No. 1, p. 2787. doi: 10.1016/j.matpr.2018.01.066
    H.P. Duan, X. Liu, X.Z. Ran, J. Li, and D. Liu, Mechanical properties and microstructure of 3D-printed high Co–Ni secondary hardening steel fabricated by laser melting deposition, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 1027. doi: 10.1007/s12613-017-1492-4
    D. Wang, H. Kahn, F. Ernst, and A.H. Heuer, NiAl precipitation in delta ferrite grains of 17-7 precipitation-hardening stainless steel during low-temperature interstitial hardening, Scripta Mater., 108(2015), p. 136. doi: 10.1016/j.scriptamat.2015.07.001
    B. Shahriari, R. Vafaei, E.M. Sharifi, and K. Farmanesh, Aging behavior of a copper-bearing high-strength low-carbon steel, Int. J. Miner. Metall. Mater., 25(2018), No. 4, p. 429. doi: 10.1007/s12613-018-1588-5
    Y.B. Hu, C.F. Dong, M. Sun, K. Xiao, P. Zhong, and X.G. Li, Effects of solution pH and Cl on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments, Corros. Sci., 53(2011), No. 12, p. 4159. doi: 10.1016/j.corsci.2011.08.024
    Q. Guo, J.H. Liu, M. Yu, and S.M. Li, Effect of passive film on mechanical properties of martensitic stainless steel 15-5PH in a neutral NaCl solution, Appl. Surf. Sci., 327(2015), p. 313. doi: 10.1016/j.apsusc.2014.11.154
    H.X. Li, D.P. Li, L. Zhang, Y.W. Wang, X.Y. Wang, and M.X. Lu, Passivity breakdown of 13Cr stainless steel under high chloride and CO2 environment, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 329. doi: 10.1007/s12613-019-1741-9
    M. Sun, K. Xiao, C.F. Dong, X.G. Li, and P. Zhong, Effect of pH on semiconducting property of passive film formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution, Metall. Mater. Trans. A, 44(2013), No. 10, p. 4709. doi: 10.1007/s11661-013-1834-4
    C. Man, C.F. Dong, Z.Y. Cui, K. Xiao, Q. Yu, and X.G. Li, A comparative study of primary and secondary passive films formed on AM355 stainless steel in 0.1 M NaOH, Appl. Surf. Sci., 427(2018), p. 763. doi: 10.1016/j.apsusc.2017.08.151
    M. Esfandiari and H. Dong, The corrosion and corrosion–wear behaviour of plasma nitrided 17-4PH precipitation hardening stainless steel, Surf. Coat. Technol., 202(2007), No. 3, p. 466. doi: 10.1016/j.surfcoat.2007.06.069
    G. Niu, Y.L. Chen, H.B. Wu, X. Wang, and D. Tang, Corrosion behavior of high-strength spring steel for high-speed railway, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 527. doi: 10.1007/s12613-018-1599-2
    D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, H. Luo, R.X. Li, L. Wang, C. Man, and X.G. Li, The passivity of selective laser melted 316L stainless steel, Appl. Surf. Sci., 504(2020), art. No. 144495. doi: 10.1016/j.apsusc.2019.144495
    D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, J.Z. Yao, C. Man, X.Q. Cheng, K. Xiao, and X.G. Li, Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes, J. Mater. Sci. Technol., 35(2019), No. 7, p. 1499. doi: 10.1016/j.jmst.2019.03.003
    K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R, 65(2009), No. 4-6, p. 39. doi: 10.1016/j.mser.2009.03.001
    P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E.A. Jägle, Steels in additive manufacturing: A review of their microstructure and properties, Mater. Sci. Eng. A, 772(2020), art. No. 138633. doi: 10.1016/j.msea.2019.138633
    Y. Hu, C. Dong, H. Luo, K. Xiao, P. Zhong, and X. Li, Study on the hydrogen embrittlement of aermet100 using hydrogen permeation and SSRT techniques, Metall. Mater. Trans. A, 48(2017), No. 9, p. 4046. doi: 10.1007/s11661-017-4159-x
    M. Sun, K. Xiao, C.F. Dong, X.G. Li, and P. Zhong, Electrochemical and initial corrosion behavior of ultrahigh strength steel by scanning kelvin probe, J. Mater. Eng. Perform., 22(2013), No. 3, p. 815. doi: 10.1007/s11665-012-0335-8
    C.Y. Chung and Y.C. Tzeng, Effects of aging treatment on the precipitation behavior of ε-Cu phase and mechanical properties of metal injection molding 17-4PH stainless steel, Mater. Lett., 237(2019), p. 228. doi: 10.1016/j.matlet.2018.11.107
    M. Hättestrand, J.O. Nilsson, K. Stiller, P. Liu, and M. Andersson, Precipitation hardening in a 12%Cr–9%Ni–4%Mo– 2%Cu stainless steel, Acta Mater., 52(2004), No. 4, p. 1023. doi: 10.1016/j.actamat.2003.10.048
    J. Warren and D.Y. Wei, The low cycle fatigue behavior of the controlled transformation stainless steel alloy AM355 at 121, 204 and 315°C, Mater. Sci. Eng. A, 475(2008), No. 1-2, p. 148. doi: 10.1016/j.msea.2007.05.021
    X.L. Xu and Z.W. Yu, Metallurgical analysis on a bending failed pump-shaft made of 17-7PH precipitation-hardening stainless steel, J. Mater. Process. Technol., 198(2008), No. 1-3, p. 254. doi: 10.1016/j.jmatprotec.2007.06.085
    S. Ifergane, M. Pinkas, Z. Barkay, E. Brosh, V. Ezersky, O. Beeri, and N. Eliaz, The relation between aging temperature, microstructure evolution and hardening of custom 465® stainless steel, Mater. Charact., 127(2017), p. 129. doi: 10.1016/j.matchar.2017.02.023
    J.L. Tian, M.B. Shahzad, W. Wang, L.C. Yin, Z.H. Jiang, and K. Yang, Role of Co in formation of Ni-Ti clusters in maraging stainless steel, J. Mater. Sci. Technol., 34(2018), No. 9, p. 1671. doi: 10.1016/j.jmst.2018.04.020
    Y.L. Dai, S.F. Yu, A.G. Huang, and Y.S. Shi, Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 933. doi: 10.1007/s12613-019-1919-1
    S. Sarkar, C.S. Kumar, and A.K. Nath, Effects of different surface modifications on the fatigue life of selective laser melted 15–5 PH stainless steel, Mater. Sci. Eng. A, 762(2019), art. No. 138109. doi: 10.1016/j.msea.2019.138109
    L. Wang, C.F. Dong, D.C. Kong, C. Man, J.X. Liang, C.J. Wang, K. Xiao, and X.G. Li, Effect of manufacturing parameters on the mechanical and corrosion behavior of selective laser-melted 15-5PH stainless steel, Steel Res. Int., 91(2019), No. 2, art. No. 1900447. doi: 10.1002/srin.201900447
    X.D. Nong, X.L. Zhou, J.H. Li, Y.D. Wang, Y.F. Zhao, and M. Brochu, Selective laser melting and heat treatment of precipitation hardening stainless steel with a refined microstructure and excellent mechanical properties, Scripta Mater., 178(2020), p. 7. doi: 10.1016/j.scriptamat.2019.10.040
    Y. Sun, R.J. Hebert, and M. Aindow, Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel, Mater. Des., 156(2018), p. 429. doi: 10.1016/j.matdes.2018.07.015
    B. Zhang and X.L. Ma, A review—Pitting corrosion initiation investigated by TEM, J. Mater. Sci. Technol., 35(2019), No. 7, p. 1455. doi: 10.1016/j.jmst.2019.01.013
    W.N. Shi, S.F. Yang, and J.S. Li, Effect of nonmetallic inclusions on localized corrosion of spring steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 390. doi: 10.1007/s12613-020-2018-z
    Y.Q. Zhang, S.H. Cheng, S.J. Wu, and F.J. Cheng, The evolution of microstructure and intergranular corrosion resistance of duplex stainless steel joint in multi-pass welding, J. Mater. Process. Technol., 277(2020), art. No. 116471. doi: 10.1016/j.jmatprotec.2019.116471
    S. Hu, Y.Z. Mao, X.B. Liu, E.H. Han, and H. Hänninen, Intergranular corrosion behavior of low-chromium ferritic stainless steel without Cr-carbide precipitation after aging, Corros. Sci., 166(2020), art. No. 108420. doi: 10.1016/j.corsci.2019.108420
    J. Venezuela, Q.L. Liu, M.X. Zhang, Q.J. Zhou, and A. Atrens, The influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels studied using the linearly increasing stress test, Corros. Sci., 99(2015), p. 98. doi: 10.1016/j.corsci.2015.06.038
    Y.H. Fan, B. Zhang, H.L. Yi, G.S. Hao, Y.Y. Sun, J.Q. Wang, E.H. Han, and W. Ke, The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel, Acta Mater., 139(2017), p. 188. doi: 10.1016/j.actamat.2017.08.011
    S.P. Lynch, Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process, Acta Metall., 36(1988), No. 10, p. 2639. doi: 10.1016/0001-6160(88)90113-7
    J. Venezuela, Q.L. Liu, M.X. Zhang, Q.J. Zhou, and A. Atrens, A review of hydrogen embrittlement of martensitic advanced high-strength steels, Corros. Rev., 34(2016), No. 3, p. 153. doi: 10.1515/corrrev-2016-0006
    S.P. Lynch, Mechanisms and kinetics of environmentally assisted cracking: Current status, issues, and suggestions for further work, Metall. Mater. Trans. A, 44(2013), No. 3, p. 1209. doi: 10.1007/s11661-012-1359-2
    Y. Snir, S. Haroush, A. Dannon, A. Landau, D. Eliezer, and Y. Gelbstein, Aging condition and trapped hydrogen effects on the mechanical behavior of a precipitation hardened martensitic stainless steel, J. Alloys Compd., 805(2019), p. 509. doi: 10.1016/j.jallcom.2019.07.112
    I.I. Vasilenko, V.I. Kapinos, A.M. Krutsan, and B.I. Kultan, The corrosion-fatigue fracture of high-strength steels in chloride solutions, Soviet Mater. Sci., 16(1981), No. 6, p. 517. doi: 10.1007/BF00723072
    Y. Xie and J.S. Zhang, Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters: A review, J. Nucl. Mater., 466(2015), p. 85. doi: 10.1016/j.jnucmat.2015.07.043
    M. Sun, K. Xiao, C.F. Dong, X.G. Li, and P. Zhong, Stress corrosion cracking of ultraultra-high strength martensite steel Cr9Ni5MoCo14 in 3.5% NaCl solution, Aerosp. Sci. Technol., 36(2014), p. 125. doi: 10.1016/j.ast.2014.03.004
    S.A. Park, D.P. Le, and J.G. Kim, Alloying effect of chromium on the corrosion behavior of low-alloy steels, Mater. Trans., 54(2013), No. 9, p. 1770. doi: 10.2320/matertrans.M2013087
    Y.L. Zhou, J. Chen, Y. Xu, and Z.Y. Liu, Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl containing environment, J. Mater. Sci. Technol., 29(2013), No. 2, p. 168. doi: 10.1016/j.jmst.2012.12.013
    Y.W. Tian, C.F. Dong, G. Wang, X.Q. Cheng, and X.G. Li, The effect of nickel on corrosion behaviour of high-strength low alloy steel rebar in simulated concrete pore solution, Constr. Build. Mater., 246(2020), art. No. 118462. doi: 10.1016/j.conbuildmat.2020.118462
    X.M. Xiao, Y. Peng, C.Y. Ma, and Z.L. Tian, Effects of alloy element and microstructure on corrosion resistant property of deposited metals of weathering steel, J. Iron Steel Res. Int., 23(2016), No. 2, p. 171. doi: 10.1016/S1006-706X(16)30030-9
    J.H. Potgieter, P.A. Olubambi, L. Cornish, C.N. Machio, and E.S.M. Sherif, Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels, Corros. Sci., 50(2008), No. 9, p. 2572. doi: 10.1016/j.corsci.2008.05.023
    H. Luo, Q. Yu, C.F. Dong, G. Sha, Z.B. Liu, J.X. Liang, L. Wang, G. Han, and X.G. Li, Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel, Corros. Sci., 139(2018), p. 185. doi: 10.1016/j.corsci.2018.04.032
    H.Y. Li, C.F. Dong, K. Xiao, X.G. Li, and P. Zhong, Effect of alloying elements on the corrosion behavior of 0Cr12Ni3Co12Mo4W ultra high strength stainless steel, Int. J. Electrochem. Sci., 10(2015), 12, p. 10173.
    V. Maurice, W. P. Yang, and P. Marcus, X-Ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe–18Cr–13Ni single-crystal surfaces, J. Electrochem. Soc., 145(1998), No. 3, p. 909. doi: 10.1149/1.1838366
    Y.S. Choi, J.G. Kim, Y.S. Park, and J.Y. Park, Austenitizing treatment influence on the electrochemical corrosion behavior of 0.3C–14Cr–3Mo martensitic stainless steel, Mater. Lett., 61(2007), No. 1, p. 244. doi: 10.1016/j.matlet.2006.04.041
    K. Kaneko, T. Fukunaga, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J.S. Barnard, and P.A. Midgley, Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel, Scripta Mater., 65(2011), No. 6, p. 509. doi: 10.1016/j.scriptamat.2011.06.010
    S.Y. Lu, K.F. Yao, Y.B. Chen, M.H. Wang, X. Liu, and X.Y. Ge, The effect of tempering temperature on the microstructure and electrochemical properties of a 13wt.% Cr-type martensitic stainless steel, Electrochim. Acta, 165(2015), p. 45. doi: 10.1016/j.electacta.2015.02.038
    K.S. Raja and K. Prasad Rao, On the hardness criterion for stress corrosion cracking resistance of 17-4PH stainless steel, J. Mater. Sci. Lett., 12(1993), No. 12, p. 963. doi: 10.1007/BF00455633
    W. Xu, P.E.J. Rivera-Díaz-Del-Castillo, W. Wang, K. Yang, V. Bliznuk, L.A.I. Kestens, and S. Van Der Zwaag, Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates, Acta Mater., 58(2010), No. 10, p. 3582. doi: 10.1016/j.actamat.2010.02.028
    L. Sun, T.H. Simm, T.L. Martin, S. McAdam, D.R. Galvin, K.M. Perkins, P.A.J. Bagot, M.P. Moody, S.W. Ooi, P. Hill, M.J. Rawson, and H.K.D.H. Bhadeshia, A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates, Acta Mater., 149(2018), p. 285. doi: 10.1016/j.actamat.2018.02.044
    L. Wang, C.F. Dong, J.Z. Yao, Z.B. Dai, C. Man, Y.P. Yin, K. Xiao, and X.G. Li, The effect of ɳ-Ni3Ti precipitates and reversed austenite on the passive film stability of nickel-rich custom 465 steel, Corros. Sci., 154(2019), p. 178. doi: 10.1016/j.corsci.2019.04.016
    G.H. Aydoğdu and M.K. Aydinol, Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel, Corros. Sci., 48(2006), No. 11, p. 3565. doi: 10.1016/j.corsci.2006.01.003
    V. Kain, K. Chandra, K.N. Adhe, and P.K. De, Detecting classical and martensite-induced sensitization using the electrochemical potentiokinetic reactivation test, Corrosion, 61(2005), No. 6, p. 587. doi: 10.5006/1.3278194
    N. Alonso-Falleiros, M. Magri, and I.G.S. Falleiros, Intergranular corrosion in a martensitic stainless steel detected by electrochemical tests, Corrosion, 55(1999), No. 8, p. 769. doi: 10.5006/1.3284032
    C. Man, C.F. Dong, D.C. Kong, L. Wang, and X.G. Li, Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel, Corros. Sci., 151(2019), p. 108. doi: 10.1016/j.corsci.2019.02.020
    J.M. Aquino, C.A. Della Rovere, and S.E. Kuri, Intergranular corrosion susceptibility in supermartensitic stainless steel weldments, Corros. Sci., 51(2009), No. 10, p. 2316. doi: 10.1016/j.corsci.2009.06.009
    S.K. Bhambri, Intergranular fracture in 13wt% chromium martensitic stainless steel, J. Mater. Sci., 21(1986), No. 5, p. 1741. doi: 10.1007/BF01114734
    Y. Matsumoto and K. Takai, Method of evaluating hydrogen embrittlement susceptibility of tempered martensitic steel showing intergranular fracture, Metall. Mater. Trans. A, 49(2018), No. 2, p. 490. doi: 10.1007/s11661-017-4435-9
    S.S.M. Tavares, F.J. Da Silva, C. Scandian, G.F. Da Silva, and H.F.G. De Abreu, Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel, Corros. Sci., 52(2010), No. 11, p. 3835. doi: 10.1016/j.corsci.2010.07.016
    J. Takahashi, K. Kawakami, Y. Kobayashi, and T. Tarui, The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography, Scripta Mater., 63(2010), No. 3, p. 261. doi: 10.1016/j.scriptamat.2010.03.012
    A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, and I.M. Robertson, The effect of nanosized (Ti, Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel, Acta Mater., 74(2014), p. 244. doi: 10.1016/j.actamat.2014.04.051
    Y.S. Chen, H.Z. Lu, J. Liang, J.T. Liang, A. Rosenthal, H.W. Liu, G. Sneddon, I. McCarroll, Z.Z. Zhao, W. Li, A.M. Guo, and J.M. Cairney, Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates, Science, 367(2020), No. 6474, p. 171. doi: 10.1126/science.aaz0122
    F.G. Wei, T. Hara, and K. Tsuzaki, Nano-preciptates design with hydrogen trapping character in high strength steel, Adv. Steels, (2011), p. 87.
    F.G. Wei, T. Hara, and K. Tsuzaki. Nano-preciptates design with hydrogen trapping character in high strength steel, [In] Y. Weng, H. Dong, and Y. Gan, eds. Advanced Steels. Springer, Berlin, Heidelberg, p. 87.
    X.F. Li, J. Zhang, Q.Q. Fu, X.L. Song, S.C. Shen, and Q.Z. Li, A comparative study of hydrogen embrittlement of 20SiMn2CrNiMo, PSB1080 and PH13-8Mo high strength steels, Mater. Sci. Eng. A, 724(2018), p. 518. doi: 10.1016/j.msea.2018.03.076
    L.W. Tsay, H.H. Chen, M.F. Chiang, and C. Chen, The influence of aging treatments on sulfide stress corrosion cracking of PH13-8 Mo steel welds, Corros. Sci., 49(2007), No. 6, p. 2461. doi: 10.1016/j.corsci.2006.12.006
    X.F. Li, J. Zhang, Q.Q. Fu, E. Akiyama, X.L. Song, S.C. Shen, and Q.Z. Li, Hydrogen embrittlement of high strength steam turbine last stage blade steels: Comparison between PH17-4 steel and PH13-8Mo steel, Mater. Sci. Eng. A, 742(2019), p. 353. doi: 10.1016/j.msea.2018.10.086
    J. Yao and J.R. Cahoon, Experimental studies of grain boundary diffusion of hydrogen in metals, Acta Metall. Mater., 39(1991), No. 1, p. 119. doi: 10.1016/0956-7151(91)90333-V
    A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, and X. Feaugas, Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Mater., 60(2012), No. 19, p. 6814. doi: 10.1016/j.actamat.2012.09.004
    Y. Momotani, A. Shibata, T. Yonemura, Y. Bai, and N. Tsuji, Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel, Scripta Mater., 178(2020), p. 318. doi: 10.1016/j.scriptamat.2019.11.051
    K.S. Raja and K. Prasad Rao, Stress corrosion cracking behaviour of 17-4PH stainless steel weldments at open-circuit potentials, J. Mater. Sci. lett., 12(1993), No. 12, p. 957. doi: 10.1007/BF00455631
    G.F. Li, R.G. Wu, and T.C. Lei, Carbide- matrix interface mechanism of stress corrosion cracking behavior of high-strength CrMo steels, Metall. Trans. A, 23(1992), No. 10, p. 2879. doi: 10.1007/BF02651766
    L.I. Gladshtein, V.M. Goritskii, and N.A, Evtushenko, Effect of sulfur and phosphorus on the brittle fracture and corrosion cracking susceptibility of high-strength Cr–Ni–Mo steel with additions of titanium, boron, and niobium, Soviet Mater. Sci., 25(1989), No. 2, p. 222. doi: 10.1007/BF00780515
    L. Xu, D.Y. Wei, Y. Yu, H. Zhang, and B.Z. Bai, Effect of microstructure on corrosion fatigue behavior of 1500 MPa level carbide-free bainite/martensite dual-phase high strength steel, J. Iron Steel Res. Int., 18(2011), No. 4, p. 63. doi: 10.1016/S1006-706X(11)60052-6
    R. Hamano, Roles of precipitates on corrosion fatigue crack growth of high-strength steels in corrosive environments, J. Mater. Sci., 24(1989), No. 2, p. 693. doi: 10.1007/BF01107461
    Q.Q. Qiao, L. Lu, E.D. Fan, J.B. Zhao, Y.N. Liu, G.C. Peng, Y.H. Huang, and X.G. Li, Effects of Nb on stress corrosion cracking of high-strength low-alloy steel in simulated seawater, Int. J. Hydrogen Energy, 44(2019), No. 51, p. 27962. doi: 10.1016/j.ijhydene.2019.08.259
    R. Ghosh, A. Venugopal, C.V. Arun Chand, P. Ramesh Narayanan, B. Pant, and R.M. Cherian, Effect of heat treatment anomaly on the stress corrosion cracking behavior of 17-4PH martensitic stainless steel, Trans. Indian Inst. Met., 72(2019), No. 6, p. 1503. doi: 10.1007/s12666-019-01659-3
    Y.Y. Song, X.Y. Li, L.J. Rong, and Y.Y. Li, The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe–13%Cr–4%Ni–Mo low carbon martensite stainless steels, Mater. Sci. Eng. A, 528(2011), No. 12, p. 4075. doi: 10.1016/j.msea.2011.01.078
    J. Horvath and H.H. Uhlig, Critical potentials for pitting corrosion of Ni, Cr–Ni Cr–Fe, and related stainless steels, J. Electrochem. Soc., 115(1968), No. 8, p. 791. doi: 10.1149/1.2411433
    X.W. Lei, Y.R. Feng, J.X. Zhang, A.Q. Fu, C.X. Yin, and D.D. Macdonald, Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel, Electrochim. Acta, 191(2016), p. 640. doi: 10.1016/j.electacta.2016.01.094
    M.D. Pereda, C.A. Gervasi, C.L. Llorente, and P.D. Bilmes, Microelectrochemical corrosion study of super martensitic welds in chloride-containing media, Corros. Sci., 53(2011), No. 12, p. 3934. doi: 10.1016/j.corsci.2011.07.040
    V. Olden, C. Thaulow, and R. Johnsen, Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels, Mater. Des., 29(2008), No. 10, p. 1934. doi: 10.1016/j.matdes.2008.04.026
    S. Frappart, X. Feaugas, J. Creus, F. Thebault, L. Delattre, and H. Marchebois, Study of the hydrogen diffusion and segregation into Fe–C–Mo martensitic HSLA steel using electrochemical permeation test, J. Phys. Chem. Solids, 71(2010), No. 10, p. 1467. doi: 10.1016/j.jpcs.2010.07.017
    X. Zhu, W. Li, H.S. Zhao, L. Wang, and X.J. Jin, Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel, Int. J. Hydrogen Energy, 39(2014), No. 24, p. 13031. doi: 10.1016/j.ijhydene.2014.06.079
    Q.L. Liu, J. Venezuela, M.X. Zhang, Q.J. Zhou, and A. Atrens, Hydrogen trapping in some advanced high strength steels, Corros. Sci., 111(2016), p. 770. doi: 10.1016/j.corsci.2016.05.046
    Y.S. Ding, L.W. Tsay, M.F. Chiang, and C. Chen, Gaseous hydrogen embrittlement of PH13-8Mo steel, J. Nucl. Mater., 385(2009), No. 3, p. 538. doi: 10.1016/j.jnucmat.2008.12.048
    Y.D. Park, I. Maroef, A. Landau, and D.L. Olson, Retained austenite as a hydrogen trap in steel welds, Weld. J., 81(2002), No. 2, p. 27S.
    T.V. Venkatasubramanian and T.J. Baker, Enhanced stress corrosion resistance from steels having a dual-phase austenite-martensite microstructure, Metall. Mater. Trans. A, 14(1983), No. 9, p. 1921. doi: 10.1007/BF02645564
    D. Webster, The stress corrosion resistance and fatigue crack growth rate of a high strength martensitic stainless steel, AFC 77, Metall. Trans., 1(1970), No. 10, p. 2919. doi: 10.1007/BF03037831
    R.O. Ritchie, M.H. Castro Cedeno, V.F. Zackay, and E.R. Parker, Effects of silicon additions and retained austenite on stress corrosion cracking in ultrahigh strength steels, Metall. Trans. A, 9(1978), p. 35. doi: 10.1007/BF02647168
    P. Schmuki, H. Hildebrand, A. Friedrich, and S. Virtanen, The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion, Corros. Sci., 47(2005), No. 5, p. 1239. doi: 10.1016/j.corsci.2004.05.023
    S.S.M. Tavares, J.M. Pardal, T.R.B. Martins, and M.R. Da Silva, Influence of sulfur content on the corrosion resistance of 17-4PH stainless steel, J. Mater. Eng. Perform., 26(2017), No. 6, p. 2512. doi: 10.1007/s11665-017-2693-8
    B. Vuillemin, X. Philippe, R. Oltra, V. Vignal, L. Coudreuse, E. Finot, and L.C. Dufour, SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection, Corros. Sci., 45(2003), No. 6, p. 1143. doi: 10.1016/S0010-938X(02)00222-6
    Y.L. Wu, Q. Guo, W.Y. Lv, and F. Huang, The pitting behavior of newly modified 17-4 precipitation hardened stainless steel with different Nb, N, and Mo contents, J. Mater. Eng. Perform., 29(2020), No. 1, p. 135. doi: 10.1007/s11665-019-04546-6
    Y.F. Wang, G.X. Cheng, W. Wu, and Y. Li, Role of inclusions in the pitting initiation of pipeline steel and the effect of electron irradiation in SEM, Corros. Sci., 130(2018), p. 252. doi: 10.1016/j.corsci.2017.10.029
    C. Man, C.F. Dong, K. Xiao, Q. Yu, and X.G. Li, The combined effect of chemical and structural factors on pitting corrosion induced by MnS–(Cr, Mn, Al)O duplex inclusions, Corrosion, 74(2018), No. 3, p. 312. doi: 10.5006/2581
    W.Z. Wei, K.M. Wu, X. Zhang, J. Liu, P. Qiu, and L. Cheng, In-situ characterization of initial marine corrosion induced by rare-earth elements modified inclusions in Zr-Ti deoxidized low-alloy steels, J. Mater. Res. Technol., 9(2020), No. 2, p. 1412. doi: 10.1016/j.jmrt.2019.11.080
    O.M.I. Todoshchenko, Y. Yagodzinskyy, T. Saukkonen, and H. Hanninen, Role of nonmetallic inclusions in hydrogen embrittlement of high-strength carbon steels with different microalloying, Metall. Mater. Trans. A, 45(2014), No. 11, p. 4742. doi: 10.1007/s11661-014-2447-2
    X.G. Liu, C. Wang, J.T. Gui, Q.Q. Xiao, and B.F. Guo, Effect of MnS inclusions on deformation behavior of matrix based on in-situ experiment, Mater. Sci. Eng. A, 746(2019), p. 239. doi: 10.1016/j.msea.2018.12.121
    Y, Kobayashi and Z. Szklarska-Smialowska, A study of the hydrogen-induced degradation of two steels differing in sulfur content, Metall. Trans. A, 17(1986), p. 2255. doi: 10.1007/BF02645923
    S.C. Shen, X.L. Song, Q.Z. Li, X.F. Li, R.H. Zhu, and G.X. Yang, A study on stress corrosion cracking and hydrogen embrittlement of Jethete M152 martensitic stainless steel, Mater. Sci. Eng. A, 740-741(2019), p. 243. doi: 10.1016/j.msea.2018.10.091
    Z.Y. Liu, X.G. Li, C.W. Du, L. Lu, Y.R. Zhang, and Y.F. Cheng, Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment, Corros. Sci., 51(2009), No. 4, p. 895. doi: 10.1016/j.corsci.2009.01.007
    J. Yao, X.H. Qu, X.B. He, and L. Zhang, Effect of inclusion size on the high cycle fatigue strength and failure mode of a high v alloyed powder metallurgy tool steel, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 608. doi: 10.1007/s12613-012-0602-6
    T. Alp, Z. Husain, and R.A. Cottis, Corrosion fatigue crack initiation and growth in 18 Ni maraging steel, J. Mater. Sci., 21(1986), No. 9, p. 3263. doi: 10.1007/BF00553367
    W. Kingkam, C.Z. Zhao, H. Li, H.X. Zhang, and Z.M. Li, Hot deformation and corrosion resistance of high-strength low-alloy steel, Acta Metall. Sin., 32(2019), No. 4, p. 495. doi: 10.1007/s40195-018-0797-2
    H.B. Wu, T. Wu, G. Niu, T. Li, R.Y. Sun, and Y. Gu, Effect of the frequency of high-angle grain boundaries on the corrosion performance of 5wt%Cr steel in a CO2 aqueous environment, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 315. doi: 10.1007/s12613-018-1575-x
    D.L. Lin, J.S. Wu, and Y. Lan, Influence of austenitizing temperature on stress corrosion in 4330m steel—the role of impurity segregation in stress corrosion cracking of high strength steel, Metall. Trans. A, 19(1988), No. 9, p. 2225. doi: 10.1007/BF02645046
    S.B. Yin, D.Y. Li, and R. Bouchard, Effects of strain rate of prior deformation on corrosion and corrosive wear of aisi 1045 steel in a 3.5 pct NaCl solution, Metall. Mater. Trans. A, 38(2007), No. 5, p. 1032. doi: 10.1007/s11661-007-9107-8
    S.C. Shen, X.F. Li, P. Zhang, Y.L. Nan, G.X. Yang, and X.L. Song, Effect of solution-treated temperature on hydrogen embrittlement of 17-4PH stainless steel, Mater. Sci. Eng. A, 703(2017), p. 413. doi: 10.1016/j.msea.2017.06.078
    L.W. Tsay, H.L. Lu, and C. Chen, The effect of grain size and aging on hydrogen embrittlement of a maraging steel, Corros. Sci., 50(2008), No. 9, p. 2506. doi: 10.1016/j.corsci.2008.06.044
    K. Takasawa, R. Ishigaki, Y. Wada, and R. Kayano, Absorption of hydrogen in high-strength low-alloy steel during tensile deformation in gaseous hydrogen, ISIJ Int., 50(2010), No. 10, p. 1496. doi: 10.2355/isijinternational.50.1496
    G.F. Li, R.G. Wu, and T.C. Lei, Effect of prior austenitic grain size on stress corrosion cracking of a high-strength steel, Metall. Trans. A, 21(1990), p. 503. doi: 10.1007/BF02782432
    H. Irrinki, T. Harper, S. Badwe, J. Stitzel, O. Gulsoy, G. Gupta, S.V. Atre, Effects of powder characteristics and processing conditions on the corrosion performance of 17-4 PH stainless steel fabricated by laser-powder bed fusion, Prog. Addit. Manuf., 3(2018), p. 39. doi: 10.1007/s40964-018-0048-0
    A. Shahriari, L. Khaksar, A. Nasiri, A. Hadadzadeh, B.S. Amirkhiz, and M. Mohammadi, Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel, Electrochim. Acta, 339(2020), art. No. 135925. doi: 10.1016/j.electacta.2020.135925
    L. Wang, C.F. Dong, C. Man, D.C. Kong, K. Xiao, and X.G. Li, Enhancing the corrosion resistance of selective laser melted 15-5PH martensite stainless steel via heat treatment, Corros. Sci., 166(2020), art. No. 108427. doi: 10.1016/j.corsci.2019.108427
    S. Sarkar, S. Mukherjee, C.S. Kumar, and A. Kumar Nath, Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5PH stainless steel parts built by selective laser melting process, J. Manuf. Process., 50(2020), p. 279. doi: 10.1016/j.jmapro.2019.12.048
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(6375) PDF Downloads(125) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint