Qiao-kun Du, Qing-xia Wu, Hong-xun Wang, Xiang-juan Meng, Ze-kai Ji, Shu Zhao, Wei-wei Zhu, Chuang Liu, Min Ling, and Cheng-du Liang, Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1603-1610. https://doi.org/10.1007/s12613-020-2247-1
Cite this article as:
Qiao-kun Du, Qing-xia Wu, Hong-xun Wang, Xiang-juan Meng, Ze-kai Ji, Shu Zhao, Wei-wei Zhu, Chuang Liu, Min Ling, and Cheng-du Liang, Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1603-1610. https://doi.org/10.1007/s12613-020-2247-1
Research Article

Carbon dot-modified silicon nanoparticles for lithium-ion batteries

+ Author Affiliations
  • Corresponding author:

    Min Ling    E-mail: minling@zju.edu.cn

  • Received: 15 November 2020Revised: 28 December 2020Accepted: 29 December 2020Available online: 1 January 2021
  • Silicon (Si) particles were functionalized using carbon dots (CDs) to enhance the interaction between the Si particles and the binders. First, CDs rich in polar groups were synthesized using a simple hydrothermal method. Then, CDs were loaded on the Si surface by impregnation to obtain the functionalized Si particles (Si/CDs). The phases and microstructures of the Si/CDs were observed using Fourier-transform infrared reflection, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Si/CDs were used as the active material of the anode for electrochemical performance experiments. The electrochemical performance of the Si/CD electrode was assessed using cyclic voltammetry, electrochemical impedance spectroscopy, and constant current charge and discharge experiment. The electrodes prepared with Si/CDs showed good mechanical structure stability and electrochemical performance. After 150 cycles at 0.2 C, the capacity retention rate of the Si/CD electrode was 64.0%, which is twice as much as that of pure Si electrode under the same test conditions.
  • loading
  • [1]
    S. Chu, Y. Cui, and N. Liu, The path towards sustainable energy, Nat. Mater., 16(2017), No. 1, p. 16. doi: 10.1038/nmat4834
    X.H. Gao, G.R. Li, Y.Y. Xu, Z.L. Hong, C.D. Liang, and Z. Lin, TiO2 microboxes with controlled internal porosity for high-performance lithium storage, Angew. Chem. Int. Ed., 54(2015), No. 48, p. 14331. doi: 10.1002/anie.201506357
    W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196(2011), No. 1, p. 13. doi: 10.1016/j.jpowsour.2010.07.020
    M. Ashuri, Q.R. He, and L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter, Nanoscale, 8(2016), No. 1, p. 74. doi: 10.1039/C5NR05116A
    B. Liang, Y.P. Liu, and Y.H. Xu, Silicon-based materials as high capacity anodes for next generation lithium ion batteries, J. Power Sources, 267(2014), p. 469. doi: 10.1016/j.jpowsour.2014.05.096
    X.X. Zuo, J. Zhu, P. Müller-Buschbaum, and Y.J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy, 31(2017), p. 113. doi: 10.1016/j.nanoen.2016.11.013
    Q.B. Zhang, H.X. Chen, L.L. Luo, B.T. Zhao, H. Luo, X. Han, J.W. Wang, C.M. Wang, Y. Yang, T. Zhu, and M.L. Liu, Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries, Energy Environ. Sci., 11(2018), No. 3, p. 669. doi: 10.1039/C8EE00239H
    E. Roduner, Size matters: Why nanomaterials are different, Chem. Soc. Rev, 35(2006), No. 7, p. 583. doi: 10.1039/b502142c
    X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano, 6(2012), No. 2, p. 1522. doi: 10.1021/nn204476h
    Z.M. Zheng, H.H. Wu, H.X. Chen, Y. Cheng, Q.B. Zhang, Q.S. Xie, L.S. Wang, K.L. Zhang, M.S. Wang, D.L. Peng, and X.C. Zeng, Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries, Nanoscale, 10(2018), No. 47, p. 22203. doi: 10.1039/C8NR07207H
    Z.M. Zheng, H.H. Wu, H.D. Liu, Q.B. Zhang, X. He, S.C. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets, ACS Nano, 14(2020), No. 8, p. 9545. doi: 10.1021/acsnano.9b08575
    X.Y. Zhao and V.P. Lehto, Challenges and prospects of nanosized silicon anodes in lithium-ion batteries, Nanotechnology, 32(2021), No. 4, art. No. 042002. doi: 10.1088/1361-6528/abb850
    H. Li, X.J. Huang, L.Q. Chen, Z.G. Wu, and Y. Liang, A high capacity nano-Si composite anode material for lithium rechargeable batteries, Electrochem. Solid-State Lett., 2(1999), No. 11, art. No. 547. doi: 10.1149/1.1390899
    C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3(2008), No. 1, p. 31. doi: 10.1038/nnano.2007.411
    C.J. Yu, X. Li, T. Ma, J.P. Rong, R.J. Zhang, J. Shaffer, Y.H. An, Q. Liu, B.Q. Wei, and H.Q. Jiang, Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation, Adv. Energy Mater., 2(2012), No. 1, p. 68. doi: 10.1002/aenm.201100634
    D.K. Kang, J.A. Corno, J.L. Gole, and H.C. Shin, Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries, J. Electrochem. Soc., 155(2008), No. 4, art. No. A276. doi: 10.1149/1.2836570
    A.M. Escamilla-Pérez, A. Roland, S. Giraud, C. Guiraud, H. Virieux, K. Demoulin, Y. Oudart, N. Louvain, and L. Monconduit, Pitch-based carbon/nano-silicon composite, an efficient anode for Li-ion batteries, RSC Adv., 9(2019), No. 19, p. 10546. doi: 10.1039/C9RA00437H
    Z.X. Xu, J. Yang, T. Zhang, Y.N. Nuli, J.L. Wang, and S.I. Hirano, Silicon microparticle anodes with self-healing multiple network binder, Joule, 2(2018), No. 5, p. 950. doi: 10.1016/j.joule.2018.02.012
    T.F. Liu, Q.L. Chu, C. Yan, S.Q. Zhang, Z. Lin, and J. Lu, Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802645. doi: 10.1002/aenm.201802645
    S. Choi, T.W. Kwon, A. Coskun, and J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries, Science, 357(2017), No. 6348, p. 279. doi: 10.1126/science.aal4373
    Z.H. Li, Y.P. Zhang, T.F. Liu, X.H. Gao, S.Y. Li, M. Ling, C.D. Liang, J.C. Zheng, and Z. Lin, Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries, Adv. Energy Mater., 10(2020), No. 20, art. No. 1903110. doi: 10.1002/aenm.201903110
    M. Ling, Y.N. Xu, H. Zhao, X.X. Gu, J.X. Qiu, S. Li, M.Y. Wu, X.Y. Song, C. Yan, G. Liu, and S.Q. Zhang, Dual-functional gum arabic binder for silicon anodes in lithium ion batteries, Nano Energy, 12(2015), p. 178. doi: 10.1016/j.nanoen.2014.12.011
    Y.J. Liu, Z.X. Tai, T.F. Zhou, V. Sencadas, J. Zhang, L. Zhang, K. Konstantinov, Z.P. Guo, and H.K. Liu, An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries, Adv. Mater., 29(2017), No. 44, art. No. 1703028. doi: 10.1002/adma.201703028
    H. Chen, M. Ling, L. Hencz, H.Y. Ling, G.R. Li, Z. Lin, G. Liu, and S.Q. Zhang, Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices, Chem. Rev., 118(2018), No. 18, p. 8936. doi: 10.1021/acs.chemrev.8b00241
    H.K. Park, B.S. Kong, and E.S. Oh, Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries, Electrochem. Commun., 13(2011), No. 10, p. 1051. doi: 10.1016/j.elecom.2011.06.034
    J.M. Oh, O. Geiculescu, D. DesMarteau, and S. Creager, Ionomer binders can improve discharge rate capability in lithium-ion battery cathodes, J. Electrochem. Soc., 158(2011), No. 2, p. A207. doi: 10.1149/1.3526598
    L. Fransson, T. Eriksson, K. Edström, T. Gustafsson, and J.O. Thomas, Influence of carbon black and binder on Li-ion batteries, J. Power Sources, 101(2001), No. 1, p. 1. doi: 10.1016/S0378-7753(01)00481-5
    C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, and Z.N. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nat. Chem., 5(2013), No. 12, p. 1042. doi: 10.1038/nchem.1802
    Y.M. Sun, J. Lopez, H.W. Lee, N. Liu, G.Y. Zheng, C.L. Wu, J. Sun, W. Liu, J.W. Chung, Z.N. Bao, and Y. Cui, A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer, Adv. Mater., 28(2016), No. 12, p. 2455. doi: 10.1002/adma.201504723
    Q. Zhang, L.B. Liu, C.G. Pan, and D. Li, Review of recent achievements in self-healing conductive materials and their applications, J. Mater. Sci., 53(2018), No. 1, p. 27. doi: 10.1007/s10853-017-1388-8
    Y. Shi, M. Wang, C.B. Ma, Y.Q. Wang, X.P. Li, and G.H. Yu, A conductive self-healing hybrid gel enabled by metal-ligand supramolecule and nanostructured conductive polymer, Nano Lett., 15(2015), No. 9, p. 6276. doi: 10.1021/acs.nanolett.5b03069
    R.W. Nunes, J.R. Martin, and J.F. Johnson, Influence of molecular weight and molecular weight distribution on mechanical properties of polymers, Polym. Eng. Sci., 22(1982), No. 4, p. 205. doi: 10.1002/pen.760220402
    D. Maldas and B.V. Kokta, Improving adhesion of wood fiber with polystyrene by the chemical treatment of fiber with a coupling agent and the influence on the mechanical properties of composites, J. Adhes. Sci. Technol., 3(1989), No. 1, p. 529. doi: 10.1163/156856189X00380
    A. Baldan, Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment, J. Mater. Sci., 39(2004), No. 1, p. 1. doi: 10.1023/B:JMSC.0000007726.58758.e4
    X.L. Zhang, C.B. Wei, Y. Li, and D.S. Yu, Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical applications, TrAC Trends Anal. Chem., 116(2019), p. 109. doi: 10.1016/j.trac.2019.03.011
    S.N. Baker and G.A. Baker, Luminescent carbon nanodots: Emergent nanolights, Angew. Chem. Int. Ed., 49(2010), No. 38, p. 6726. doi: 10.1002/anie.200906623
    H.T. Li, Z.H. Kang, Y. Liu, and S.T. Lee, Carbon nanodots: Synthesis, properties and applications, J. Mater. Chem., 22(2012), No. 46, p. 24230. doi: 10.1039/c2jm34690g
    S.J. Zhu, Y.B. Song, X.H. Zhao, J.R. Shao, J.H. Zhang, and B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective, Nano Res., 8(2015), No. 2, p. 355. doi: 10.1007/s12274-014-0644-3
    S.L. Hu, K.Y. Niu, J. Sun, J. Yang, N.Q. Zhao, and X.W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation, J. Mater. Chem., 19(2009), No. 4, p. 484. doi: 10.1039/B812943F
    S.C. Ray, A. Saha, N.R. Jana, and R. Sarkar, Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application, J. Phys. Chem. C, 113(2009), No. 43, p. 18546. doi: 10.1021/jp905912n
    H. Zhou, J. Nanda, S.K. Martha, R.R. Unocic, H.M. Meyer, Y. Sahoo, P. Miskiewicz, and T.F. Albrecht, Role of surface functionality in the electrochemical performance of silicon nanowire anodes for rechargeable lithium batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 10, p. 7607. doi: 10.1021/am500855a
    Y.C. Yen, S.C. Chao, H.C. Wu, and N.L. Wu, Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells, J. Electrochem. Soc., 156(2009), No. 2, art. No. A95. doi: 10.1149/1.3032230
    S.J. Zhu, Q.N. Meng, L. Wang, J.H. Zhang, Y.B. Song, H. Jin, K. Zhang, H.C. Sun, H.Y. Wang, and B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging, Angew. Chem. Int. Ed., 52(2013), No. 14, p. 3953. doi: 10.1002/anie.201300519
    J.X. Song, M.J. Zhou, R. Yi, T. Xu, M.L. Gordin, D.H. Tang, Z.X. Yu, M. Regula, and D.H. Wang, Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries, Adv. Funct. Mater., 24(2014), No. 37, p. 5904. doi: 10.1002/adfm.201401269
    C. Chen, S.H. Lee, M. Cho, J. Kim, and Y. Lee, Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 4, p. 2658. doi: 10.1021/acsami.5b10673
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Share Article

    Article Metrics

    Article views (629) PDF downloads(45) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint