Xiaozhao Ma, Zhilei Xiang, Tao Li, Yilan Chen, Yingying Liu, Ziyong Chen, and Qun Shu, Evolution laws of microstructures and mechanical properties during heat treatments for near-α high-temperature titanium alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1596-1607. https://doi.org/10.1007/s12613-021-2248-8
Cite this article as:
Xiaozhao Ma, Zhilei Xiang, Tao Li, Yilan Chen, Yingying Liu, Ziyong Chen, and Qun Shu, Evolution laws of microstructures and mechanical properties during heat treatments for near-α high-temperature titanium alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1596-1607. https://doi.org/10.1007/s12613-021-2248-8
Research Article

Evolution laws of microstructures and mechanical properties during heat treatments for near-α high-temperature titanium alloys

+ Author Affiliations
  • Corresponding author:

    Ziyong Chen    E-mail: czy@bjut.edu.cn

  • Received: 21 September 2020Revised: 7 December 2020Accepted: 5 January 2021Available online: 6 January 2021
  • Evolution laws of microstructures, mechanical properties, and fractographs after different solution temperatures were investigated through various analysis methods. With the increasing solution temperatures, contents of the primary α phase decreased, and contents of transformed β structures increased. Lamellar α grains dominated the characteristics of transformed β structures, and widths of secondary α lamellas increased monotonously. For as-forged alloy, large silicides with equiaxed and rod-like morphologies, and nano-scale silicides were found. Silicides with large sizes might be (Ti, Zr, Nb)5Si3 and (Ti, Zr, Nb)6Si3. Rod-like silicides with small sizes precipitated in retained β phase, exhibiting near 45° angles with α/β boundaries. Retained β phases in as-heat treated alloys were incontinuous. 980STA exhibited an excellent combination of room temperature (RT) and 650°C mechanical properties. Characteristics of fracture surfaces largely depended on the evolutions of microstructures. Meanwhile, silicides promoted the formation of mico-voids.
  • loading
  • [1]
    X.J. Jiang, R. Jing, C.Y. Liu, M.Z. Ma, and R.P. Liu, Structure and mechanical properties of TiZr binary alloy after Al addition, Mater. Sci. Eng. A, 586(2013), p. 301. doi: 10.1016/j.msea.2013.08.029
    [2]
    P. Parvizian, M. Morakabati, and S. Sadeghpour, Effect of hot rolling and annealing temperatures on the microstructure and mechanical properties of SP-700 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 374. doi: 10.1007/s12613-019-1922-6
    [3]
    J.C. Williams and E.A. Starke Jr, Progress in structural materials for aerospace systems, Acta Mater., 51(2003), No. 19, p. 5775. doi: 10.1016/j.actamat.2003.08.023
    [4]
    L. Yang, B.Y. Wang, J.G. Lin, H.J. Zhao, and W.Y. Ma, Ductile fracture behavior of TA15 titanium alloy at elevated temperatures, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1082. doi: 10.1007/s12613-015-1171-2
    [5]
    R. Boyer, G. Welsch, and E. Collings, Materials Properties Handbook: Titanium Alloys, 1994.
    [6]
    K. Prasad, R. Sarkar, P. Ghosal, D.V.V. Satyanarayana, S.V. Kamat, and T.K. Nandy, Tensile and creep properties of thermomechanically processed boron modified Timetal 834 titanium alloy, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 6733. doi: 10.1016/j.msea.2011.05.069
    [7]
    V.K. Chandravanshi, A. Bhattacharjee, S.V. Kamat, and T.K. Nandy, Influence of thermomechanical processing and heat treatment on microstructure, tensile properties and fracture toughness of Ti–1100–0.1B alloy, J. Alloys Compd., 589(2014), p. 336. doi: 10.1016/j.jallcom.2013.11.014
    [8]
    S.A.A. Shams, S. Mirdamadi, S.M. Abbasi, Y. Lee, and C.S. Lee, Coarsening kinetics of primary alpha in a near alpha titanium alloy, J. Alloys Compd., 735(2018), p. 1769. doi: 10.1016/j.jallcom.2017.11.296
    [9]
    Q.J. Wang, J.R. Liu, and R. Yang, High temperature titanium alloys: Status and perspective, J. Aeronaut. Mater., 34(2014), No. 4, p. 1. doi: 10.11868/j.issn.1005-5053.2014.4.001
    [10]
    P.L. Narayana, S.W. Kim, J.K. Hong, N.S. Reddy, and J.T. Yeom, Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650°C, Mater. Sci. Eng. A, 718(2018), p. 287. doi: 10.1016/j.msea.2018.01.113
    [11]
    T. Li, L.H. Chai, S.H. Shi, et al., Effect of near-isothermal forging temperature on the microstructure and mechanical properties of near α high temperature titanium alloy, Mater. Sci. Forum, 898(2017), p. 579. doi: 10.4028/www.scientific.net/MSF.898.579
    [12]
    P. Han, B.L. Li, J.M. Yin, T. Liu, and Z.R. Nie, Effect of Er on creep properties of a near-α high temperature titanium alloy, Sci. Technol. Eng., 12(2012), No. 17, p. 4124.
    [13]
    X.Z. Ma, L.H. Chai, Y.Y. Liu, et al., TiB whiskers stimulated the dynamic recrystallization behavior, J. Alloys Compd., 812(2020), art. No. 152152. doi: 10.1016/j.jallcom.2019.152152
    [14]
    Z.B. Zhao, Q.J. Wang, J.R. Liu, and R. Yang, Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60, Acta Mater., 131(2017), p. 305. doi: 10.1016/j.actamat.2017.04.007
    [15]
    X.Z. Ma, Z.L. Xiang, M.Z. Ma, Y.P. Cui, W.M. Ren, Z.T. Wang, J.C. Huang, and Z.Y. Chen, Investigation of microstructures, textures, mechanical properties and fracture behaviors of a newly developed near α titanium alloy, Mater. Sci. Eng. A, 775(2020), art. No. 138996. doi: 10.1016/j.msea.2020.138996
    [16]
    S.X. Liang, M.Z. Ma, R. Jing, X.Y. Zhang, and R.P. Liu, Microstructure and mechanical properties of hot-rolled ZrTiAlV alloys, Mater. Sci. Eng. A, 532(2012), p. 1. doi: 10.1016/j.msea.2011.10.053
    [17]
    Y. Yue, L.Y. Dai, H. Zhong, C.L. Tan, M.Z. Ma, X.Y. Zhang, and R.P. Liu, Enhanced mechanical properties for mill-annealed Ti–20Zr–6.5Al–4V alloy with a fine equiaxed microstructure, Mater. Sci. Eng. A, 678(2016), p. 286. doi: 10.1016/j.msea.2016.09.116
    [18]
    S.T. He, W.D. Zeng, J.W. Xu, and W. Chen, The effects of microstructure evolution on the fracture toughness of BT-25 titanium alloy during isothermal forging and subsequent heat treatment, Mater. Sci. Eng. A, 745(2019), p. 203. doi: 10.1016/j.msea.2018.12.062
    [19]
    J.R. Wood, P.A. Russo, M.F. Welter, and E.M. Crist, Thermomechanical processing and heat treatment of Ti–6Al–2Sn–2Zr–2Cr–2Mo–Si for structural applications, Mater. Sci. Eng. A, 243(1998), No. 1-2, p. 109. doi: 10.1016/S0921-5093(97)00787-9
    [20]
    J.X. Li, L.Q. Wang, J.N. Qin, Y.F. Chen, W.J. Lu, and D. Zhang, Effect of TRIPLEX heat treatment on tensile properties of in situ synthesized (TiB + La2O3)/Ti composite, Mater. Sci. Eng. A, 527(2010), No. 21-22, p. 5811. doi: 10.1016/j.msea.2010.05.065
    [21]
    S.M.C. van Bohemen, A. Kamp, R.H. Petrov, L.A.I. Kestens, and J. Sietsma, Nucleation and variant selection of secondary α plates in a β Ti alloy, Acta Mater., 56(2008), No. 20, p. 5907. doi: 10.1016/j.actamat.2008.08.016
    [22]
    S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, and S.L. Semiatin, Microstructure evolution during warm working of Ti–6Al–4V with a colony-α microstructure, Acta Mater., 57(2009), No. 8, p. 2470. doi: 10.1016/j.actamat.2009.02.016
    [23]
    J.X. Li, L.Q. Wang, J.N. Qin, Y.F. Chen, W.J. Lu, and D. Zhang, The effect of heat treatment on thermal stability of Ti matrix composite, J. Alloys Compd., 509(2011), No. 1, p. 52. doi: 10.1016/j.jallcom.2010.09.005
    [24]
    A.K. Singh, C. Ramachandra, and V. Singh, Orientation relationship between matrix phases and silicide S2 in alloy Ti–6Al–1.6Zr–3.3Mo–0.3Si, J. Mater. Sci. Lett., 11(1992), No. 4, p. 218. doi: 10.1007/BF00741426
    [25]
    W.J. Jia, W.D. Zeng, and H.Q. Yu, Effect of aging on the tensile properties and microstructures of a near-alpha titanium alloy, Mater. Des., 58(2014), p. 108. doi: 10.1016/j.matdes.2014.01.063
    [26]
    C.J. Zhang, X. Li, S.Z. Zhang, L.H. Chai, Z.Y. Chen, F.T. Kong, and Y.Y. Chen, Effects of direct rolling deformation on the microstructure and tensile properties of the 2.5 vol% (TiBw+TiCp)/Ti composites, Mater. Sci. Eng. A, 684(2017), p. 645. doi: 10.1016/j.msea.2016.12.113
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(1684) PDF Downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return