Qi Wang, Yue-yong Du, Yan-qing Lai, Fang-yang Liu, Liang-xing Jiang, and Ming Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1629-1635. https://doi.org/10.1007/s12613-021-2249-7
Cite this article as:
Qi Wang, Yue-yong Du, Yan-qing Lai, Fang-yang Liu, Liang-xing Jiang, and Ming Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1629-1635. https://doi.org/10.1007/s12613-021-2249-7
Research Article

Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries

+ Author Affiliations
  • Corresponding author:

    Ming Jia    E-mail: jiamingsunmoon@aliyun.com

  • Received: 24 September 2020Revised: 7 January 2021Accepted: 9 January 2021Available online: 13 January 2021
  • Antimony sulfide (Sb2S3) is a promising anode for lithium-ion batteries due to its high capacity and vast reserves. However, the low electronic conductivity and severe volume change during cycling hinder its commercialization. Herein our work, a three-dimensional (3D) Sb2S3 thin film anode was fabricated via a simple vapor transport deposition system by using natural stibnite as raw material and stainless steel fiber-foil (SSF) as 3D current collector, and a carbon nanotube interphase was introduced onto the film surface by a simple dropping-heating process to promote the electrochemical performances. This 3D structure can greatly improve the initial coulombic efficiency to a record of 86.6% and high reversible rate capacity of 760.8 mAh·g−1 at 10 C. With carbon nanotubes interphase modified, the Sb2S3 anode cycled extremely stable with high capacity retention of 94.7% after 160 cycles. This work sheds light on the economical preparation and performance optimization of Sb2S3-based anodes.
  • loading
  • [1]
    M.L. Hao, J. Li, S. Park, S. Moura, and C. Dames, Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy, Nat. Energy, 3(2018), No. 10, p. 899. doi: 10.1038/s41560-018-0243-8
    Z.D. Lei, Q.S. Yang, Y. Xu, S.Y. Guo, W.W. Sun, H. Liu, L.P. Lv, Y. Zhang, and Y. Wang, Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry, Nat. Commun., 9(2018), art. No. 576. doi: 10.1038/s41467-018-02889-7
    M. Ko, S. Chae, J. Ma, N. Kim, H.W. Lee, Y. Cui, and J. Cho, Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries, Nat. Energy, 1(2016), art. No. 16113. doi: 10.1038/nenergy.2016.113
    H.S. Hou, M.J. Jing, Z.D. Huang, Y.C. Yang, Y. Zhang, J. Chen, Z.B. Wu, and X.B. Ji, One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 34, p. 19362. doi: 10.1021/acsami.5b05509
    S.H. Dong, C.X. Li, X.L. Ge, Z.Q. Li, X.G. Miao, and L.W. Yin, ZnS–Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries, ACS Nano, 11(2017), No. 6, p. 6474. doi: 10.1021/acsnano.7b03321
    S.S. Yao, J. Cui, J.Q. Huang, Z.H. Lu, Y. Deng, W.G. Chong, J.X. Wu, M. Ihsan Ul Haq, F. Ciucci, and J.K. Kim, Novel 2D Sb2S3 nanosheet/CNT coupling layer for exceptional polysulfide recycling performance, Adv. Energy Mater., 8(2018), No. 24, art. No. 1800710. doi: 10.1002/aenm.201800710
    W. Luo, X. Ao, Z.S. Li, L. Lv, J.G. Li, G. Hong, Q.H. Wu, and C.D. Wang, Imbedding ultrafine Sb2S3 nanoparticles in mesoporous carbon sphere for high-performance lithium-ion battery, Electrochim. Acta, 290(2018), p. 185. doi: 10.1016/j.electacta.2018.09.070
    S.S. Yao, J. Cui, Y. Deng, W.G. Chong, J.X. Wu, M. Ihsan-Ul-haq, Y.W. Mai, and J.K. Kim, Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage, Energy Storage Mater., 20(2019), p. 36. doi: 10.1016/j.ensm.2018.11.005
    P.V. Prikhodchenko, J. Gun, S. Sladkevich, A.A. Mikhaylov, O. Lev, Y.Y. Tay, S.K. Batabyal, and D.Y.W. Yu, Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@Graphene for a superior lithium battery anode, Chem. Mater., 24(2012), No. 24, p. 4750. doi: 10.1021/cm3031818
    X.Z. Zhou, L.H. Bai, J. Yan, S.H. He, and Z.Q. Lei, Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance, Electrochim. Acta, 108(2013), p. 17. doi: 10.1016/j.electacta.2013.06.049
    D.Y.W. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, and O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries, Nat. Commun., 4(2013), art. No. 2922. doi: 10.1038/ncomms3922
    A.W. Nemaga, J. Mallet, J. Michel, C. Guery, M. Molinari, and M. Morcrette, All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries, J. Power Sources, 393(2018), p. 43. doi: 10.1016/j.jpowsour.2018.04.093
    J.F. Ni, S.D. Fu, Y.F. Yuan, L. Ma, Y. Jiang, L. Li, and J. Lu, Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation, Adv. Mater., 30(2018), No. 6, art. No. 1704337. doi: 10.1002/adma.201704337
    R.W. Mo, D. Rooney, K.N. Sun, and H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery, Nat. Commun., 8(2017), art. No. 13949. doi: 10.1038/ncomms13949
    H. Park, J.H. Um, H. Choi, W.S. Yoon, Y.E. Sung, and H. Choe, Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries, Appl. Surf. Sci., 399(2017), p. 132. doi: 10.1016/j.apsusc.2016.12.043
    R.J. Zou, Z.Y. Zhang, M.F. Yuen, M.L. Sun, J.Q. Hu, C.S. Lee, and W.J. Zhang, Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries, NPG Asia Mater., 7(2015), No. 6, art. No. e195. doi: 10.1038/am.2015.63
    W. Yuan, B.Y. Wang, H. Wu, M.W. Xiang, Q. Wang, H. Liu, Y. Zhang, H.K. Liu, and S.X. Dou, A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries, J. Power Sources, 379(2018), p. 10. doi: 10.1016/j.jpowsour.2018.01.023
    E. Peled, F. Patolsky, D. Golodnitsky, K. Freedman, G. Davidi, and D. Schneier, Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries, Nano Lett., 15(2015), No. 6, p. 3907. doi: 10.1021/acs.nanolett.5b00744
    H.C. Tao, S.C. Zhu, L.Y. Xiong, X.L. Yang, and L.L. Zhang, Three-dimensional carbon-coated SnO2/reduced graphene oxide foam as a binder-free anode for high-performance lithium-ion batteries, ChemElectroChem, 3(2016), No. 7, p. 1063. doi: 10.1002/celc.201600128
    Y. Yang, X.J. Fan, G. Casillas, Z.W. Peng, G.D. Ruan, G. Wang, M.J. Yacaman, and J.M. Tour, Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries, ACS Nano, 8(2014), No. 4, p. 3939. doi: 10.1021/nn500865d
    S. Moitzheim, J.E. Balder, R. Ritasalo, S. Ek, P. Poodt, S. Unnikrishnan, S. De Gendt, and P.M. Vereecken, Toward 3D thin-film batteries: Optimal current-collector design and scalable fabrication of TiO2 thin-film electrodes, ACS Appl. Energy Mater., 2(2019), No. 3, p. 1774. doi: 10.1021/acsaem.8b01905
    Q. Wang, Y.Q. Lai, F.Y. Liu, L.X. Jiang, and M. Jia, Amorphous Sb2S3 anodes by reactive radio frequency magnetron sputtering for high-performance lithium-ion half/full cells, Energy Technol., 7(2019), No. 11, art. No. 1900928. doi: 10.1002/ente.201900928
    A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, and W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 4(2005), No. 5, p. 366. doi: 10.1038/nmat1368
    P. Makreski, G. Petruševski, S. Ugarković, and G. Jovanovski, Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts, Vib. Spectrosc., 68(2013), p. 177. doi: 10.1016/j.vibspec.2013.07.007
    P. Makreski, G. Jovanovski, B. Minceva-Sukarova, B. Soptrajanov, A. Green, B. Engelen, and I. Grzetic, Vibrational spectra of M3IMIIIS3 type synthetic minerals (MI = Tl or Ag and MIII = As or Sb), Vib. Spectrosc., 35(2004), No. 1-2, p. 59. doi: 10.1016/j.vibspec.2003.11.007
    S. Kharbish, E. Libowitzky, and A. Beran, Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb, Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite, Eur. J. Mineral., 21(2009), No. 2, p. 325. doi: 10.1127/0935-1221/2009/0021-1914
    H. Li, K. Qian, X.Y. Qin, D.Q. Liu, R.Y. Shi, A.H. Ran, C.P. Han, Y.B. He, F.Y. Kang, and B.H. Li, The different Li/Na ion storage mechanisms of nano Sb2O3 anchored on graphene, J. Power Sources, 385(2018), p. 114. doi: 10.1016/j.jpowsour.2018.03.031
    R. Parize, T. Cossuet, O. Chaix-Pluchery, H. Roussel, E. Appert, and V. Consonni, In situ analysis of the crystallization process of Sb2S3 thin films by Raman scattering and X-ray diffraction, Mater. Des., 121(2017), p. 1. doi: 10.1016/j.matdes.2017.02.034
    Q.H. Nguyen, J.S. Choi, Y.C. Lee, I.T. Kim, and J. Hur, 3D hierarchical structure of MoS2@G-CNT combined with post-film annealing for enhanced lithium-ion storage, J. Ind. Eng. Chem., 69(2019), p. 116. doi: 10.1016/j.jiec.2018.09.015
    Q. Li, G.Z. Zhu, Y.H. Zhao, K. Pei, and R.C. Che, NixMnyCozO nanowire/CNT composite microspheres with 3D interconnected conductive network structure via spray-drying method: A high-capacity and long-cycle-life anode material for lithium-ion batteries, Small, 15(2019), No. 15, art. No. 1900069. doi: 10.1002/smll.201900069
    H.L. Zhang, C.G. Hu, Y. Ding, and Y. Lin, Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO, J. Alloys Compd., 625(2015), p. 90. doi: 10.1016/j.jallcom.2014.11.052
    S.J. Wang, S.S. Liu, X.M. Li, C. Li, R. Zang, Z.M. Man, Y.H. Wu, P.X. Li, and G.X. Wang, SnS2/Sb2S3 heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries, Chem. Eur. J., 24(2018), No. 15, p. 3873. doi: 10.1002/chem.201705855
    D.Y.W. Yu, H.E. Hoster, and S.K. Batabyal, Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries, Sci. Rep., 4(2015), No. 1, art. No. 4562. doi: 10.1038/srep04562
    J.J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, S. Nie, and X.Y. Wang, Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries, Nano-Micro Lett., 10(2018), No. 1, art. No. 12. doi: 10.1007/s40820-017-0165-1
    Y.C. Dong, S.L. Yang, Z.Y. Zhang, J.M. Lee, and J.A. Zapien, Enhanced electrochemical performance of lithium ion batteries using Sb2S3 nanorods wrapped in graphene nanosheets as anode materials, Nanoscale, 10(2018), No. 7, p. 3159. doi: 10.1039/C7NR09441H
    J. Ren, R.P. Ren, and Y.K. Lv, A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery, Chem. Eng. J., 353(2018), p. 419. doi: 10.1016/j.cej.2018.07.139
    Y.R. Dong, H. Jiang, Z.N. Deng, Y.J. Hu, and C.Z. Li, Synthesis and assembly of three-dimensional MoS2/rGO nanovesicles for high-performance lithium storage, Chem. Eng. J., 350(2018), p. 1066. doi: 10.1016/j.cej.2018.06.044
    C.R. Zhu, X.H. Xia, J.L. Liu, Z.X. Fan, D.L. Chao, H. Zhang, and H.J. Fan, TiO2 nanotube@SnO2 nanoflake core-branch arrays for lithium-ion battery anode, Nano Energy, 4(2014), p. 105. doi: 10.1016/j.nanoen.2013.12.018
    W.J. Tang, X.L. Wang, D. Xie, X.H. Xia, C.D. Gu, and J.P. Tu, Hollow metallic 1T MoS2 arrays grown on carbon cloth: A freestanding electrode for sodium ion batteries, J. Mater. Chem. A, 6(2018), No. 37, p. 18318. doi: 10.1039/C8TA06905K
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Share Article

    Article Metrics

    Article views (518) PDF downloads(41) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint