Wen-qi Liuand Jun-he Lian, Stress-state dependence of dynamic strain aging: Thermal hardening and blue brittleness, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 854-866. https://doi.org/10.1007/s12613-021-2250-1
Cite this article as:
Wen-qi Liuand Jun-he Lian, Stress-state dependence of dynamic strain aging: Thermal hardening and blue brittleness, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 854-866. https://doi.org/10.1007/s12613-021-2250-1
Research ArticleOpen Access

Stress-state dependence of dynamic strain aging: Thermal hardening and blue brittleness

+ Author Affiliations
  • Corresponding author:

    Jun-he Lian    E-mail: junhe.lian@aalto.fi

  • Received: 14 October 2020Revised: 31 December 2020Accepted: 11 January 2021Available online: 13 January 2021
  • This study aims to discover the stress-state dependence of the dynamic strain aging (DSA) effect on the deformation and fracture behavior of high-strength dual-phase (DP) steel at different deformation temperatures (25–400°C) and reveal the damage mechanisms under these various configurations. To achieve different stress states, predesigned specimens with different geometric features were used. Scanning electron microscopy was applied to analyze the fracture modes (e.g., dimple or shear mode) and underlying damage mechanism of the investigated material. DSA is present in this DP steel, showing the Portevin–Le Chatelier (PLC) effect with serrated flow behavior, thermal hardening, and blue brittleness phenomena. Results show that the stress state contributes distinctly to the DSA effect in terms of the magnitude of thermal hardening and the pattern of blue brittleness. Either low stress triaxiality or Lode angle parameter promotes DSA-induced blue brittleness. Accordingly, the damage mechanisms also show dependence on the stress states in conjunction with the DSA effect.

  • loading
  • [1]
    J.D. Baird, Strain aging of steel: A critical review, Iron Steel, 36(1963), p. 186.
    A. Keh, Y. Nakada, and W. Leslie, Dynamic strain aging in iron and steel, [in] Dislocation Dynamics, Mc Graw-Hill, New York, 1968, 381.
    J.D. Baird, The effects of strain-ageing due to interstitial solutes on the mechanical properties of metals, Metall. Rev., 16(1971), No. 1, p. 1. doi: 10.1179/095066071790137928
    W.C. Leslie, Iron and its dilute substitutional solid solutions, Metall. Mater. Trans. B, 3(1972), No. 1, p. 5. doi: 10.1007/BF02680580
    M.J. Roberts and W.S. Owen, Unstable flow in martensite and ferrite, Metall. Trans., 1(1970), p. 3203.
    A.W. Sleeswyk, Slow strain-hardening of ingot iron, Acta Metall., 6(1958), No. 9, p. 598. doi: 10.1016/0001-6160(58)90101-9
    A.H. Cottrell and B.A. Bilby, Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc. A, 62(1949), No. 1, p. 49. doi: 10.1088/0370-1298/62/1/308
    A.H. Cottrell, M.A. Jaswon, and N.F. Mott, Distribution of solute atoms round a slow dislocation, Proc. R. Soc. London Ser. A, 199(1949), No. 1056, p. 104. doi: 10.1098/rspa.1949.0128
    A.P.a.F.L. Chatelier, A phenomenon observed during the tensile test alloys during processing, C. R. Acad. Sci., 176(1923), p. 507.
    G. Mima and F. Inoko, A study on the blue-brittle behaviour of a mild steel in torsional deformation, Trans. Jpn. Inst. Met., 10(1969), No. 3, p. 227. doi: 10.2320/matertrans1960.10.227
    I.E. Dolzhenkov, Influence of deformation rate on the blue brittleness temperature and dislocation density of carbon steel, Met. Sci. Heat Treat., 9(1967), No. 6, p. 423. doi: 10.1007/BF00657585
    J.G. Kim, S. Hong, N. Anjabin, B.H. Park, S.K. Kim, K.G. Chin, S. Lee, and H.S. Kim, Dynamic strain aging of twinning-induced plasticity (TWIP) steel in tensile testing and deep drawing, Mater. Sci. Eng. A, 633(2015), p. 136. doi: 10.1016/j.msea.2015.03.008
    L. Chen, H.S. Kim, S.K. Kim, and B.C. De Cooman, Localized deformation due to Portevin-LeChatelier effect in 18Mn−0.6C TWIP austenitic steel, ISIJ Int., 47(2007), No. 12, p. 1804. doi: 10.2355/isijinternational.47.1804
    F.H. Shen, S. Münstermann, and J.H. Lian, An evolving plasticity model considering anisotropy, thermal softening and dynamic strain aging, Int. J. Plasticity, 132(2020), art. No. 102747. doi: 10.1016/j.ijplas.2020.102747
    X.Y. Li, C.C. Roth, and D. Mohr, Machine-learning based temperature- and rate-dependent plasticity model: Application to analysis of fracture experiments on DP steel, Int. J. Plasticity, 118(2019), p. 320. doi: 10.1016/j.ijplas.2019.02.012
    S.G. Hong and S.B. Lee, Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel, J. Nucl. Mater., 328(2004), No. 2-3, p. 232. doi: 10.1016/j.jnucmat.2004.04.331
    V.S. Srinivasan, M. Valsan, R. Sandhya, K. Bhanu Sankara Rao, S.L. Mannan, and D.H. Sastry, High temperature time-dependent low cycle fatigue behaviour of a type 316L(N) stainless steel, Int. J. Fatigue, 21(1999), No. 1, p. 11. doi: 10.1016/S0142-1123(98)00052-8
    C. Gupta, J.K. Chakravartty, S.L. Wadekar, and S. Banerjee, Fracture behaviour in the dynamic strain ageing regime of a martensitic steel, Scripta Mater., 55(2006), No. 12, p. 1091. doi: 10.1016/j.scriptamat.2006.08.045
    A.R. Das, T. Chowdhury, S. Sivaprasad, H.N. Bar, N. Narasaiah, and S. Tarafder, Influence of dynamic strain ageing on fracture behaviour and stretch zone formation of a reactor pressure vessel steel, Int. J. Fract., 202(2016), No. 1, p. 79. doi: 10.1007/s10704-016-0134-6
    R. Mohan and C. Marschall, Cracking instabilities in a low-carbon steel susceptible to dynamic strain aging, Acta Mater., 46(1998), No. 6, p. 1933. doi: 10.1016/S1359-6454(97)00423-0
    P. Verma, G. Sudhakar Rao, P. Chellapandi, G.S. Mahobia, K. Chattopadhyay, N.C. Santhi Srinivas, and V. Singh, Dynamic strain ageing, deformation, and fracture behavior of modified 9Cr–1Mo steel, Mater. Sci. Eng. A, 621(2015), p. 39. doi: 10.1016/j.msea.2014.10.011
    W. Karlsen, M. Ivanchenko, U. Ehrnstén, Y. Yagodzinskyy, and H. Hänninen, Microstructural manifestation of dynamic strain aging in AISI 316 stainless steel, J. Nucl. Mater., 395(2009), No. 1-3, p. 156. doi: 10.1016/j.jnucmat.2009.10.047
    B.M. Gonzalez, L.A. Marchi, E.J.D. Fonseca, P.J. Modenesi, and V.T.L. Buono, Measurement of dynamic strain aging in pearlitic steels by tensile test, ISIJ Int., 43(2003), No. 3, p. 428. doi: 10.2355/isijinternational.43.428
    A.R. Kohandehghan, A.R. Sadeghi, J.M. Akhgar, and S. Serajzadeh, Investigation into dynamic strain aging behaviour in high carbon steel, Ironmaking Steelmaking, 37(2010), No. 2, p. 155. doi: 10.1179/174328109X461400
    D. Caillard and J. Bonneville, Dynamic strain aging caused by a new Peierls mechanism at high-temperature in iron, Scripta Mater., 95(2015), p. 15. doi: 10.1016/j.scriptamat.2014.09.019
    D. Caillard, Dynamic strain ageing in iron alloys: The shielding effect of carbon, Acta Mater., 112(2016), p. 273. doi: 10.1016/j.actamat.2016.04.018
    G.C. Soares, R.R.U. Queiroz, and L.A. Santos, Effects of dynamic strain aging on strain hardening behavior, dislocation substructure, and fracture morphology in a ferritic stainless steel, Metall. Mater. Trans. A, 51(2020), No. 2, p. 725. doi: 10.1007/s11661-019-05574-6
    M.S. Shahriary, B. Koohbor, K. Ahadi, A. Ekrami, M. Khakian-Qomi, and T. Izadyar, The effect of dynamic strain aging on room temperature mechanical properties of high martensite dual phase (HMDP) steel, Mater. Sci. Eng. A, 550(2012), p. 325. doi: 10.1016/j.msea.2012.04.082
    H. Najam, M. Koyama, B. Bal, E. Akiyama, and K. Tsuzaki, Strain rate and hydrogen effects on crack growth from a notch in a Fe-high-Mn steel containing 1.1wt% solute carbon, Int. J. Hydrogen Energy, 45(2020), No. 1, p. 1125. doi: 10.1016/j.ijhydene.2019.10.227
    M. Srinivas, G. Malakondaiah, K.L. Murty, and P.R. Rao, Fracture toughness in the dynamic strain ageing regime, Scripta Metall. Mater., 25(1991), No. 11, p. 2585. doi: 10.1016/0956-716X(91)90073-A
    A.S. Alomari, N. Kumar, and K.L. Murty, Enhanced ductility in dynamic strain aging regime in a Fe–25Ni–20Cr austenitic stainless steel, Mater. Sci. Eng. A, 729(2018), p. 157. doi: 10.1016/j.msea.2018.05.060
    S.J. Lee, J. Kim, S.N. Kane, and B.C.D. Cooman, On the origin of dynamic strain aging in twinning-induced plasticity steels, Acta Mater., 59(2011), No. 17, p. 6809. doi: 10.1016/j.actamat.2011.07.040
    D.M. Field and D.C. Van Aken, Dynamic strain aging phenomena and tensile response of medium-Mn TRIP steel, Metall. Mater. Trans. A, 49(2018), No. 4, p. 1152. doi: 10.1007/s11661-018-4481-y
    R.R.U. Queiroz, F.G.G. Cunha, and B.M. Gonzalez, Study of dynamic strain aging in dual phase steel, Mater. Sci. Eng. A, 543(2012), p. 84. doi: 10.1016/j.msea.2012.02.050
    P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Hydrogen effects on the interaction between dislocations, Acta Mater., 46(1998), No. 5, p. 1749. doi: 10.1016/S1359-6454(97)00349-2
    Z. Que, H.P. Seifert, P. Spaetig, A. Zhang, J. Holzer, G.S. Rao, and S. Ritter, Effect of dynamic strain ageing on environmental degradation of fracture resistance of low-alloy RPV steels in high-temperature water environments, Corros. Sci., 152(2019), p. 172. doi: 10.1016/j.corsci.2019.03.013
    Z. Que, H.P. Seifert, P. Spaetig, J. Holzer, G.S. Rao, S. Ritter, and A. Zhang, Environmental degradation of fracture resistance in high-temperature water environments of low-alloy reactor pressure vessel steels with high sulphur or phosphorus contents, Corros. Sci., 154(2019), p. 191. doi: 10.1016/j.corsci.2019.04.011
    X.Q. Wu and I.S. Kim, Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl.3 pressure vessel steel, Mater. Sci. Eng. A, 348(2003), No. 1-2, p. 309. doi: 10.1016/S0921-5093(02)00737-2
    J.H. Lian, H.Q. Yang, N. Vajragupta, S. Münstermann, and W. Bleck, A method to quantitatively upscale the damage initiation of dual-phase steels under various stress states from microscale to macroscale, Comput. Mater. Sci., 94(2014), p. 245. doi: 10.1016/j.commatsci.2014.05.051
    B. Wu, N. Vajragupta, J. Lian, U. Hangen, P. Wechsuwanrnanee, and S. Muenstermann, Prediction of plasticity and damage initiation behaviour of C45E+N steel by micromechanical modelling, Mater. Des., 121(2017), p. 154. doi: 10.1016/j.matdes.2017.02.032
    Q.G. Xie, J.H. Lian, J.J. Sidor, F.W. Sun, X.C. Yan, C.Y. Chen, T.K. Liu, W.J. Chen, P. Yang, K. An, and Y.D. Wang, Crystallographic orientation and spatially resolved damage in a dispersion-hardened Al alloy, Acta Mater., 193(2020), p. 138. doi: 10.1016/j.actamat.2020.03.049
    J.S. He, J.H. Lian, G. Golisch, A. He, Y.D. Di, and S. Münstermann, Investigation on micromechanism and stress state effects on cleavage fracture of ferritic-pearlitic steel at −196°C, Mater. Sci. Eng. A, 686(2017), p. 134. doi: 10.1016/j.msea.2017.01.042
    J.H. Lian, P.F. Liu, and S. Münstermann, Modeling of damage and failure of dual phase steel in Nakajima test, Key Eng. Mater., 525-526(2012), p. 69. doi: 10.4028/www.scientific.net/KEM.525-526.69
    W.Q. Liu, J.H. Lian, S. Münstermann, C.Y. Zeng, and X.F. Fang, Prediction of crack formation in the progressive folding of square tubes during dynamic axial crushing, Int. J. Mech. Sci., 176(2020), art. No. 105534. doi: 10.1016/j.ijmecsci.2020.105534
    W.Q. Liu, J.H. Lian, N. Aravas, and S. Münstermann, A strategy for synthetic microstructure generation and crystal plasticity parameter calibration of fine-grain-structured dual-phase steel, Int. J. Plast., 126(2020), art. No. 102614. doi: 10.1016/j.ijplas.2019.10.002
    J.H. Lian, T. Wierzbicki, J.E. Zhu, and W. Li, Prediction of shear crack formation of lithium-ion batteries under rod indentation: Comparison of seven failure criteria, Eng. Fract. Mech., 217(2019), art. No. 106520. doi: 10.1016/j.engfracmech.2019.106520
    J.H. Lian, M. Sharaf, F. Archie and S. Münstermann, A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets, Int. J. Damage Mech., 22(2013), No. 2, p. 188. doi: 10.1177/1056789512439319
    W.Q. Liu, J.H. Lian, and S. Münstermann, Damage mechanism analysis of a high-strength dual-phase steel sheet with optimized fracture samples for various stress states and loading rates, Eng. Fail. Anal., 106(2019), art. No. 104138. doi: 10.1016/j.engfailanal.2019.08.004
    British Standards Institution, BS EN ISO 6892-1:2016: Metallic Materials—Tensile Testing—Part1: Method of Test at Room Temperature, 2016.
    B.C. De Cooman, 10 - Phase transformations in high manganese twinning-induced plasticity (TWIP) steels, Phase Transformations Steels, 2(2012), p. 295.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Share Article

    Article Metrics

    Article Views(924) PDF Downloads(57) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint