Wen Yu, Jianxin Zhou, Yajun Yin, Zhixin Tu, Xin Feng, Hai Nan, Junpin Lin, and Xianfei Ding, Effects of heat treatments on microstructures of TiAl alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1225-1230. https://doi.org/10.1007/s12613-021-2252-z
Cite this article as:
Wen Yu, Jianxin Zhou, Yajun Yin, Zhixin Tu, Xin Feng, Hai Nan, Junpin Lin, and Xianfei Ding, Effects of heat treatments on microstructures of TiAl alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1225-1230. https://doi.org/10.1007/s12613-021-2252-z
Research Article

Effects of heat treatments on microstructures of TiAl alloys

+ Author Affiliations
  • Corresponding authors:

    Jianxin Zhou    E-mail: zhoujianxin@hust.edu.cn

    Xianfei Ding    E-mail: xianfeimail@gmail.com

  • Received: 24 November 2020Revised: 6 January 2021Accepted: 15 January 2021Available online: 16 January 2021
  • This study aims to investigate the effects of heat treatments on the microstructure of γ-TiAl alloys. Two Ti–47Al–2Cr–2Nb alloy ingots were manufactured by casting method and then heat-treated in two types of heat treatments. Their microstructures were studied by both optical and scanning electron microscopies. The chemical compositions of two ingots were determined as well. The ingot with lower Al content only obtains lamellar structures while the one higher in Al content obtains nearly lamellar and duplex structures after heat treatment within 1270 to 1185°C. A small amount of B2 phase is found to be precipitated in both as-cast and heat-treated microstructures. They are distributed at grain boundaries when holding at a higher temperature, such as 1260°C. However, B2 phase is precipitated at grain boundaries and in colony interiors simultaneously after heat treatments happened at 1185°C. Furthermore, the effects of heat treatments on grain refinement and other microstructural parameters are discussed.
  • loading
  • [1]
    H. Clemens and S. Mayer, Intermetallic titanium aluminides in aerospace applications—Processing, microstructure and properties, Mater. High Temp., 33(2016), No. 4-5, p. 560. doi: 10.1080/09603409.2016.1163792
    [2]
    F. Appel, H. Clemens, and F.D. Fischer, Modeling concepts for intermetallic titanium aluminides, Prog. Mater. Sci., 81(2016), p. 55. doi: 10.1016/j.pmatsci.2016.01.001
    [3]
    D.M. Dimiduk, Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials, Mater. Sci. Eng. A, 263(1999), No. 2, p. 281. doi: 10.1016/S0921-5093(98)01158-7
    [4]
    Y.W. Kim, Intermetallic alloys based on gamma titanium aluminide, JOM, 41(1989), No. 7, p. 24. doi: 10.1007/BF03220267
    [5]
    Y.W. Kim and S.L. Kim, Advances in gammalloy materials–processes–application technology: Successes, dilemmas, and future, JOM, 70(2018), No. 4, p. 553. doi: 10.1007/s11837-018-2747-x
    [6]
    B.P. Bewlay, S. Nag, A. Suzuki, and M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp., 33(2016), No. 4-5, p. 549. doi: 10.1080/09603409.2016.1183068
    [7]
    J.K. Kim, J.H. Kim, J.Y. Kim, S.H. Park, S.W. Kim, M.H. Oh, and S.E. Kim, Producing fine fully lamellar microstructure for cast γ-TiAl without hot working, Intermetallics, 120(2020), art. No. 106728. doi: 10.1016/j.intermet.2020.106728
    [8]
    J. Aguilar, A. Schievenbusch, and O. Kättlitz, Investment casting technology for production of TiAl low pressure turbine blades—Process engineering and parameter analysis, Intermetallics, 19(2011), No. 6, p. 757. doi: 10.1016/j.intermet.2010.11.014
    [9]
    T.J. Kelly, C.M. Austin, and R.E. Allen, Processing of Gamma Titanium–Aluminide alloy Using a Heat Treatment Prior to Deformation Processing, U.S. Patent, Appl. 08/376519, 1997.
    [10]
    T.J. Kelly, B.P. Bewlay, M.J. Weimer, and R.K. Whitacre, Methods for Processing Titanium Aluminide Intermetallic Compositions, European Patent, Appl. 13159885.6, 2013.
    [11]
    T.J. Kelly, M.J. Weimer, C.M. Austin, B. London, D.E. Larson, and D.A. Wheeler, Heat Treatment of Gamma Titanium Aluminide Alloys, U.S. Patent, Appl. 08/262168, 2001.
    [12]
    M. Guillaume, M.C. Jeanne, and M.P. Marie, Heat Treatment of an Alloy Based on Titanium Aluminide, U.S. Patent, Appl. 15/302418, 2015.
    [13]
    T.S. Harding and J.W. Jones, Fatigue thresholds of cracks resulting from impact damage to γ-TiAl, Scripta Mater., 43(2000), No. 7, p. 623. doi: 10.1016/S1359-6462(00)00470-X
    [14]
    C. Mercer, J. Lou, and W.O. Soboyejo, An investigation of fatigue crack growth in a cast lamellar Ti–48Al–2Cr–2Nb alloy, Mater. Sci. Eng. A, 284(2000), No. 1-2, p. 235. doi: 10.1016/S0921-5093(00)00702-4
    [15]
    S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, and C. Badini, Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics, 19(2011), No. 6, p. 776. doi: 10.1016/j.intermet.2010.11.017
    [16]
    Y. Mine, K. Takashima, and P. Bowen, Effect of lamellar spacing on fatigue crack growth behaviour of a TiAl-based aluminide with lamellar microstructure, Mater. Sci. Eng. A, 532(2012), p. 13. doi: 10.1016/j.msea.2011.10.055
    [17]
    H.L. Zhu, D.Y. Seo, K. Maruyama, and P. Au, Effect of lamellar spacing on microstructural instability and creep behavior of a lamellar TiAl alloy, Scripta Mater., 54(2006), No. 12, p. 1979. doi: 10.1016/j.scriptamat.2006.03.023
    [18]
    Z.T. Gao, J.R. Yang, Y.L. Wu, R. Hu, S.L. Kim, and Y.W. Kim, A newly generated nearly lamellar microstructure in cast Ti–48Al–2Nb–2Cr alloy for high-temperature strengthening, Metall. Mater. Trans. A, 50(2019), No. 12, p. 5839. doi: 10.1007/s11661-019-05491-8
    [19]
    M. Ahmadi, S.R. Hosseini, and S.M.M. Hadavi, Effects of heat treatment on microstructural modification of as-cast gamma-TiAl alloy, J. Mater. Eng. Perform., 25(2016), No. 6, p. 2138. doi: 10.1007/s11665-016-2067-7
    [20]
    Y.J. Du, J. Shen, Y.L. Xiong, Z. Shang, and H.Z. Fu, Stability of lamellar microstructures in a Ti–48Al–2Nb–2Cr alloy during heat treatment and its application to lamellae alignment as a quasi-seed, Intermetallics, 61(2015), p. 80. doi: 10.1016/j.intermet.2015.02.018
    [21]
    A. Szkliniarz, Grain refinement of Ti–48Al–2Cr–2Nb alloy by heat treatment method, Solid State Phenom., 191(2012), p. 221. doi: 10.4028/www.scientific.net/SSP.191.221
    [22]
    A. Kościelna and W. Szkliniarz, Effect of cyclic heat treatment parameters on the grain refinement of Ti–48Al–2Cr–2Nb alloy, Mater. Charact., 60(2009), No. 10, p. 1158. doi: 10.1016/j.matchar.2009.03.008
    [23]
    T. Novoselova, S. Malinov, and W. Sha, Experimental study of the effects of heat treatment on microstructure and grain size of a gamma TiAl alloy, Intermetallics, 11(2003), No. 5, p. 491. doi: 10.1016/S0966-9795(03)00028-1
    [24]
    J.N. Wang, J. Yang, and Y. Wang, Grain refinement of a Ti–47Al–8Nb–2Cr alloy through heat treatments, Scripta Mater., 52(2005), No. 4, p. 329. doi: 10.1016/j.scriptamat.2004.10.004
    [25]
    W.J. Zhang, G.L. Chen, and E. Evangelista, Formation of α phase in the massive and feathery γ-TiAl alloys during aging in the single α field, Metall. Mater. Trans. A, 30(1999), No. 10, p. 2591. doi: 10.1007/s11661-999-0298-z
    [26]
    H.P. Tang, G.Y. Yang, W.P. Jia, W.W. He, S.L. Lu, and M. Qian, Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting, Mater. Sci. Eng. A, 636(2015), p. 103. doi: 10.1016/j.msea.2015.03.079
    [27]
    J.C. Schuster and M. Palm, Reassessment of the binary Aluminum–Titanium phase diagram, J. Phase Equilib. Diffus., 27(2006), No. 3, p. 255. doi: 10.1361/154770306X109809
    [28]
    P. Han, H.C. Kou, J.R. Yang, G. Yang, and J.S. Li, Solidification microstructure characteristics of Ti–44Al–4Nb–2Cr–0.1B alloy under various cooling rates during mushy zone, Rare Met., 35(2016), No. 1, p. 35. doi: 10.1007/s12598-015-0633-z
    [29]
    Y. Liu, R. Hu, H.C. Kou, J. Wang, T.B. Zhang, J.S. Li, and J. Zhang, Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents, Rare Met., 34(2015), No. 6, p. 381. doi: 10.1007/s12598-014-0416-y
    [30]
    Y. Liu, R. Hu, G. Yang, H.C. Kou, T.B. Zhang, J. Wang, and J.S. Li, Widmannstätten laths in Ti48Al2Cr2Nb alloy by undercooled solidification, Mater. Charact., 107(2015), p. 156. doi: 10.1016/j.matchar.2015.07.006
    [31]
    S.C. Huang and E.L. Hall, The effects of Cr additions to binary TiAl-base alloys, Metall. Trans. A, 22(1991), No. 11, p. 2619. doi: 10.1007/BF02851355
    [32]
    Y.W. Kim, Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy, Acta Metall. Mater., 40(1992), No. 6, p. 1121. doi: 10.1016/0956-7151(92)90411-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1739) PDF Downloads(84) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return