Dong Wu, Wenya Li, Qiang Chu, Yangfan Zou, Xichang Liu,  and Yanjun Gao, Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al–Mg, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1589-1595. https://doi.org/10.1007/s12613-021-2254-x
Cite this article as:
Dong Wu, Wenya Li, Qiang Chu, Yangfan Zou, Xichang Liu,  and Yanjun Gao, Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al–Mg, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1589-1595. https://doi.org/10.1007/s12613-021-2254-x
Research Article

Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al–Mg

+ Author Affiliations
  • Corresponding author:

    Wenya Li    E-mail: liwy@nwpu.edu.cn

  • Received: 7 October 2020Revised: 22 December 2020Accepted: 20 January 2021Available online: 22 January 2021
  • The bobbin tool friction stir welding process was used to join 6 mm thick 5A06 aluminum alloy plates. Optical microscope was used to characterize the microstructure. The electron backscatter diffraction (EBSD) identified the effect of non-homogeneous microstructure on the tensile properties. It was observed that the grain size in the top of the stir zone (SZ) is smaller than that in the centre region. The lowest ratio of recrystallization and density of the geometrically-necessary dislocations (GNDs) in the SZ was found in the middle near the thermo-mechanically affected zone (TMAZ) being 22% and 1.15 × 10−13 m−2, respectively. The texture strength of the heat-affected zone (HAZ) is the largest, followed by that in the SZ, with the lowest being in the TMAZ. There were additional interfaces developed which contributed to the strengthening mechanism, and their effect on tensile strength was analysed. The tensile tests identified the weakest part in the joint at the interfaces, and the specific reduction value is about 93 MPa.
  • loading
  • [1]
    X.X. Zhang, D.R. Ni, B.L. Xiao, H. Andrä, W.M. Gan, M. Hofmann, and Z.Y. Ma, Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction, Acta Mater., 87(2015), p. 161. doi: 10.1016/j.actamat.2015.01.006
    [2]
    B. Bagheri, M. Abbasi, and A. Abdollahzadeh, Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 450. doi: 10.1007/s12613-020-2085-1
    [3]
    M. Hajizadeh, S. Emami and T. Saeid, Influence of welding speed on microstructure formation in friction-stir-welded 304 austenitic stainless steels, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. P1517. doi: 10.1007/s12613-020-2001-8
    [4]
    K. Fuse and V. Badheka, Bobbin tool friction stir welding: A review, Sci. Technol. Weld. Joining, 24(2019), No. 4, p. 277. doi: 10.1080/13621718.2018.1553655
    [5]
    T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, and G. Çam, Microstructure and mechanical properties of friction-stir welded St52 steel joints, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1457. doi: 10.1007/s12613-018-1700-x
    [6]
    L. Zhou, G.H. Li, G.D. Zha, F.Y. Shu, H.J. Liu, and J.C. Feng, Effect of rotation speed on microstructure and mechanical properties of bobbin tool friction stir welded AZ61 magnesium alloy, Sci. Technol. Weld. Joining, 23(2018), No. 7, p. 596. doi: 10.1080/13621718.2018.1432098
    [7]
    J. Chen, H. Fujii, Y.F. Sun, Y. Morisada, and R. Ueji, Fine grained Mg–3Al–1Zn alloy with randomized texture in the double-sided friction stir welded joints, Mater. Sci. Eng. A, 580(2013), p. 83. doi: 10.1016/j.msea.2013.05.044
    [8]
    B.T. Gibson, D.H. Lammlein, T.J. Prater, W.R. Longhurst, C.D. Cox, M.C. Ballun, K.J. Dharmaraj, G.E. Cook, and A.M. Strauss, Friction stir welding: Process, automation, and control, J. Manuf. Process., 16(2014), No. 1, p. 56. doi: 10.1016/j.jmapro.2013.04.002
    [9]
    J.H. Dong, C. Gao, Y. Lu, J. Han, X.D. Jiao, and Z.X. Zhu, Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024–T3 aluminum alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 171. doi: 10.1007/s12613-017-1392-7
    [10]
    W.M. Thomas, C.S. Wiesner, D.J. Marks, and D.G. Staines, Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials, Sci. Technol. Weld. Joining, 14(2009), No. 3, p. 247. doi: 10.1179/136217109X415893
    [11]
    F.F. Wang, W.Y. Li, J. Shen, S.Y. Hu, and J.F. dos Santos, Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al–Li alloy, Mater. Des., 86(2015), p. 933. doi: 10.1016/j.matdes.2015.07.096
    [12]
    G.R. Cui, Z.Y. Ma, and S.X. Li, The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al–Mg alloy, Acta Mater., 57(2009), No. 19, p. 5718. doi: 10.1016/j.actamat.2009.07.065
    [13]
    W.F. Xu, Y.X. Luo, and M.W. Fu, Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy, Mater. Charact., 138(2018), p. 48. doi: 10.1016/j.matchar.2018.01.051
    [14]
    A.H. Baghdadi, A. Rajabi, N.F.M. Selamat, Z. Sajuri, and M.Z. Omar, Effect of post-weld heat treatment on the mechanical behavior and dislocation density of friction stir welded Al6061, Mater. Sci. Eng. A, 754(2019), p. 728. doi: 10.1016/j.msea.2019.03.017
    [15]
    G.Q. Wang, Y.H. Zhao, and Y.Y. Tang, Research progress of bobbin tool friction stir welding of aluminum alloys: A review, Acta Metall. Sinica Engl. Lett., 33(2020), No. 1, p. 13. doi: 10.1007/s40195-019-00946-8
    [16]
    A.L. Lafly, D. Alléhaux, F. Marie, C. Dalle Donne, and G. Biallas, Microstructure and mechanical properties of the aluminium alloy 6056 welded by friction stir welding techniques, Weld. World, 50(2006), No. 11-12, p. 98. doi: 10.1007/BF03263466
    [17]
    C. Yang, D.R. Ni, P. Xue, B.L. Xiao, W. Wang, K.S. Wang, and Z.Y. Ma, A comparative research on bobbin tool and conventional friction stir welding of Al–Mg–Si alloy plates, Mater. Charact., 145(2018), p. 20. doi: 10.1016/j.matchar.2018.08.027
    [18]
    W.F. Xu, Y.X. Luo, W. Zhang, and M.W. Fu, Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate, J. Mater. Sci. Technol., 34(2018), No. 1, p. 173. doi: 10.1016/j.jmst.2017.05.015
    [19]
    M. Esmaily, N. Mortazavi, W. Osikowicz, H. Hindsefelt, J.E. Svensson, M. Halvarsson, J. Martin, and L.G. Johansson, Bobbin and conventional friction stir welding of thick extruded AA6005-T6 profiles, Mater. Des., 108(2016), p. 114. doi: 10.1016/j.matdes.2016.06.089
    [20]
    D. Wu, W.Y. Li, Y.J. Gao, J. Yang, Q. Wen, N. Vidakis, and A. Vairis, Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al–Mg joints, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 710. doi: 10.1007/s12613-020-2134-9
    [21]
    F.F. Wang, W.Y. Li, J. Shen, Z.H. Zhang, J.L. Li, and J.F. dos Santos, Global and local mechanical properties and microstructure of Bobbin tool friction-stir-welded Al–Li alloy, Sci. Technol. Weld. Joining, 21(2016), No. 6, p. 479. doi: 10.1080/13621718.2015.1132128
    [22]
    S. Benavides, Y. Li, L.E. Murr, D. Brown, and J.C. McClure, Low-temperature friction-stir welding of 2024 aluminum, Scr. Mater., 41(1999), No. 8, p. 809. doi: 10.1016/S1359-6462(99)00226-2
    [23]
    T. Azimzadegan and S. Serajzadeh, An investigation into microstructures and mechanical properties of AA7075-T6 during friction stir welding at relatively high rotational speeds, J. Mater. Eng. Perform., 19(2010), No. 9, p. 1256. doi: 10.1007/s11665-010-9625-1
    [24]
    V.K. Patel, S.D. Bhole, and D.L. Chen, Influence of ultrasonic spot welding on microstructure in a magnesium alloy, Scr. Mater., 65(2011), No. 10, p. 911. doi: 10.1016/j.scriptamat.2011.08.009
    [25]
    R. Badji, T. Chauveau, and B. Bacroix, Texture, misorientation and mechanical anisotropy in a deformed dual phase stainless steel weld joint, Mater. Sci. Eng. A, 575(2013), p. 94. doi: 10.1016/j.msea.2013.03.018
    [26]
    C. Herrera, D. Ponge, and D. Raabe, Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Mater., 59(2011), No. 11, p. 4653. doi: 10.1016/j.actamat.2011.04.011
    [27]
    R. Kapoor, N. Kumar, R.S. Mishra, C.S. Huskamp and K.K. Sankaran, Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy, Mater. Sci. Eng. A, 527(2010), No. 20, pp. P5246-5254. doi: 10.1016/j.msea.2010.04.086
    [28]
    J.J. Sidor, R.H. Petrov, and L.A.I. Kestens, Microstructural and texture changes in severely deformed aluminum alloys, Mater. Charact., 62(2011), No. 2, p. 228. doi: 10.1016/j.matchar.2010.12.004
    [29]
    M.M. Moradi, H.J. Aval, R. Jamaati, S. Amirkhanlou, and S.X. Ji, Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061, J. Manuf. Process., 32(2018), p. 1. doi: 10.1016/j.jmapro.2018.01.016
    [30]
    J.J. Shen, F.F. Wang, U.F.H. Suhuddin, S.Y. Hu, W.Y. Li, and J.F.d. Santos, Crystallographic texture in bobbin tool friction-stir-welded aluminum, Metall. Mater. Trans. A, 46(2015), No. 7, p. 2809. doi: 10.1007/s11661-015-2948-7
    [31]
    K.K. Ma, H.M. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater., 62(2014), p. 141. doi: 10.1016/j.actamat.2013.09.042
    [32]
    E.L. Huskins, B. Cao, and K.T. Ramesh, Strengthening mechanisms in an Al–Mg alloy, Mater. Sci. Eng. A, 527(2010), No. 6, p. 1292. doi: 10.1016/j.msea.2009.11.056
    [33]
    C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Al–Al3Ti nanocomposites produced in situ by friction stir processing, Acta Mater., 54(2006), No. 19, p. 5241. doi: 10.1016/j.actamat.2006.06.054
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1253) PDF Downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return