Jiali Zhangand Stefan Zaefferer, Influence of sample preparation on nanoindentation results of twinning-induced plasticity steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 877-887. https://doi.org/10.1007/s12613-021-2260-z
Cite this article as:
Jiali Zhangand Stefan Zaefferer, Influence of sample preparation on nanoindentation results of twinning-induced plasticity steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 877-887. https://doi.org/10.1007/s12613-021-2260-z
Research Article

Influence of sample preparation on nanoindentation results of twinning-induced plasticity steel

+ Author Affiliations
  • Corresponding author:

    Jiali Zhang    E-mail: j.zhang@iwm.rwth-aachen.de

  • Received: 1 October 2020Revised: 26 January 2021Accepted: 26 January 2021Available online: 2 February 2021
  • Nanoindentation is an attractive characterization technique, as it not only measures the local properties of a material but also facilitates understanding of deformation mechanisms at submicron scales. However, because of the complex stress–strain field and the small scale of the deformation under the nanoindenter, the results can be easily influenced by artifacts induced during sample preparation. In this work, a systematic study was conducted to better understand the influence of sample preparation methods on the nanoindentation results of ductile metals. All experiments were conducted on a steel (Fe–22Mn–0.65C, wt%) with twinning-induced plasticity (TWIP), which was selected for its large grain size and sensitivity to different surface preparation methods. By grouping the results obtained from each nanoindent, chemical polishing was found to be the best sample preparation method with respect to the resulting mechanical properties of the material. In contrast, the presence of a deformation layer left by mechanical polishing and surface damage induced by focused ion beam (FIB) scanning were confirmed by the dislocation-nucleation-induced pop-in events of nanoindentation.

  • loading
  • [1]
    A.C. Fischer-Cripps, Nanoindentation, Springer, Lindfield, Australia, 2004.
    C.A. Schuh, Nanoindentation studies of materials, Mater. Today, 9(2006), No. 5, p. 32. doi: 10.1016/S1369-7021(06)71495-X
    J.L. Zhang, C.C. Tasan, M.J. Lai, D. Yan, and D. Raabe, Partial recrystallization of gum metal to achieve enhanced strength and ductility, Acta Mater., 135(2017), p. 400. doi: 10.1016/j.actamat.2017.06.051
    Z.C. Wu, S. Sandlöbes, J. Rao, J.S.K.L. Gibson, B. Berkels, and S. Korte-Kerzel, Local mechanical properties and plasticity mechanisms in a Zn–Al eutectic alloy, Mater. Des., 157(2018), p. 337. doi: 10.1016/j.matdes.2018.07.051
    L.S. de Vasconcelos, R. Xu, J.L. Li, and K.J. Zhao, Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries, Extreme Mech. Lett., 9(2016), Part3, p. 495. doi: 10.1016/j.eml.2016.03.002
    L. Morsdorf, C.C. Tasan, D. Ponge, and D. Raabe, 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence, Acta Mater., 95(2015), p. 366. doi: 10.1016/j.actamat.2015.05.023
    A. Khosravani, L. Morsdorf, C.C. Tasan, and S.R. Kalidindi, Multiresolution mechanical characterization of hierarchical materials: Spherical nanoindentation on martensitic Fe–Ni–C steels, Acta Mater., 153(2018), p. 257. doi: 10.1016/j.actamat.2018.04.063
    C. Zambaldi and D. Raabe, Plastic anisotropy of γ-TiAl revealed by axisymmetric indentation, Acta Mater., 58(2010), No. 9, p. 3516. doi: 10.1016/j.actamat.2010.02.025
    C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe, Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys, Acta Mater., 81(2014), p. 386. doi: 10.1016/j.actamat.2014.07.071
    W.Q. Liu, J.H. Lian, N. Aravas, and S. Münstermann, A strategy for synthetic microstructure generation and crystal plasticity parameter calibration of fine-grain-structured dual-phase steel, Int. J. Plast., 126(2020), art. No. 102614. doi: 10.1016/j.ijplas.2019.10.002
    J.D. Nowak, K.A. Rzepiejewska-Malyska, R.C. Major, O.L. Warren, and J. Michler, In-situ nanoindentation in the SEM, Mater. Today, 12(2010), Suppl. 1, p. 44. doi: 10.1016/S1369-7021(10)70144-9
    H. Nili, K. Kalantar-zadeh, M. Bhaskaran, and S. Sriram, In situ nanoindentation: Probing nanoscale multifunctionality, Prog. Mater. Sci., 58(2013), No. 1, p. 1. doi: 10.1016/j.pmatsci.2012.08.001
    W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus, J. Mater. Res., 7(1992), No. 6, p. 1564. doi: 10.1557/JMR.1992.1564
    S. Pathak, D. Stojakovic, R. Doherty, and S.R. Kalidindi, Importance of surface preparation on the nano-indentation stress-strain curves measured in metals, J. Mater. Res., 24(2009), No. 3, p. 1142. doi: 10.1557/jmr.2009.0137
    J.L. Hay and G.M. Pharr, Instrumented indentation testing, ASM Handbook, 8(2000), p. 232.
    Z.G. Wang, H. Bei, E.P. George, and G.M. Pharr, Influences of surface preparation on nanoindentation pop-in in single-crystal Mo, Scripta Mater., 65(2011), No. 6, p. 469. doi: 10.1016/j.scriptamat.2011.05.030
    K. Jin, Y. Xia, M. Crespillo, H. Xue, Y. Zhang, Y.F. Gao, and H. Bei, Quantifying early stage irradiation damage from nanoindentation pop-in tests, Scripta Mater., 157(2018), p. 49. doi: 10.1016/j.scriptamat.2018.07.035
    O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application, Int. J. Plast., 16(2000), No. 10-11, p. 1391. doi: 10.1016/S0749-6419(00)00015-2
    I. Gutierrez-Urrutia and D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe–22wt.%Mn–0.6wt.%C TWIP steel observed by electron channeling contrast imaging, Acta Mater., 59(2011), No. 16, p. 6449. doi: 10.1016/j.actamat.2011.07.009
    K.G. Chin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K.H. Kim, and N.J. Kim, Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2922. doi: 10.1016/j.msea.2010.12.085
    M. Koyama, E. Akiyama, and K. Tsuzaki, Hydrogen embrittlement in a Fe–Mn–C ternary twinning-induced plasticity steel, Corros. Sci., 54(2012), p. 1. doi: 10.1016/j.corsci.2011.09.022
    X.F. Wang, X.P. Yang, Z.D. Guo, Y.C. Zhou, and H.W. Song, Nanoindentation characterization of mechanical properties of ferrite and austenite in duplex stainless steel, Adv. Mater. Res., 26-28(2007), p. 1165. doi: 10.4028/www.scientific.net/AMR.26-28.1165
    Y. Xia, M. Bigerelle, J. Marteau, P.E. Mazeran, S. Bouvier, and A. Iost, Effect of surface roughness in the determination of the mechanical properties of material using nanoindentation test, Scanning, 36(2014), No. 1, p. 134. doi: 10.1002/sca.21111
    M. Laurent-Brocq, E. Béjanin, and Y. Champion, Influence of roughness and tilt on nanoindentation measurements: A quantitative model, Scanning, 37(2015), No. 5, p. 350. doi: 10.1002/sca.21220
    P. Filippov and U. Koch, Nanoindentation of aluminum single crystals: Experimental study on influencing factors, Materials (Basel), 12(2019), No. 22, p. 3688. doi: 10.3390/ma12223688
    I. Gutierrez-Urrutia, S. Zaefferer, and D.Raabe, Electron channeling constrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope, Scripta Mater., 61(2009), No. 7, p. 737. doi: 10.1016/j.scriptamat.2009.06.018
    J.S. Yu, J.L. Liu, J.X. Zhang, and J.S. Wu, TEM investigation of FIB induced damages in preparation of metal material TEM specimens by FIB, Mater. Lett., 60(2006), No. 2, p. 206. doi: 10.1016/j.matlet.2005.08.018
    J.L. Zhang, S. Zaefferer, and D. Raabe, A study on the geometry of dislocation patterns in the surrounding of nanoindents in a TWIP steel using electron channeling contrast imaging and discrete dislocation dynamics simulations, Mater. Sci. Eng. A, 636(2015), p. 231. doi: 10.1016/j.msea.2015.03.078
    A. Barnoush, M.T. Welsch, and H. Vehoff, Correlation between dislocation density and pop-in phenomena in aluminum studied by nanoindentation and electron channeling contrast imaging, Scripta Mater., 63(2010), No. 5, p. 465. doi: 10.1016/j.scriptamat.2010.04.048
    A. Montagne, V. Audurier, and C. Tromas, Influence of pre-existing dislocations on the pop-in phenomenon during nanoindentation in MgO, Acta Mater., 61(2013), No. 13, p. 4778. doi: 10.1016/j.actamat.2013.05.004
    R.D.K. Misra, Z. Zhang, Z. Jia, P.K.C. Venkat Surya, M.C. Somani, and L. P. Karjalainen, Nanomechanical insights into the deformation behavior of austenitic alloys with different stacking fault energies and austenitic stability, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 6958. doi: 10.1016/j.msea.2011.05.068
    D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H. Leipner, Pop-in Effect as Homogeneous Nucleation of Dislocations During Nanoindentation, Phys. Rev. B: Condens. Matter, 67(2003), No. 17, art. No. 172101. doi: 10.1103/PhysRevB.67.172101
    G. Gottstein, Physical Foundations of Materials Science, Springer, Berlin, 2004.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(612) PDF Downloads(33) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint