Pengqi Chen, Yunxiao Tai, Huan Wu, Yufei Gao, Jiayu Chen,  and Jigui Cheng, Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1627-1634. https://doi.org/10.1007/s12613-021-2265-7
Cite this article as:
Pengqi Chen, Yunxiao Tai, Huan Wu, Yufei Gao, Jiayu Chen,  and Jigui Cheng, Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1627-1634. https://doi.org/10.1007/s12613-021-2265-7
Research Article

Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction

+ Author Affiliations
  • Corresponding author:

    Jigui Cheng    E-mail: jgcheng@hfut.edu.cn

  • Received: 19 December 2020Revised: 28 January 2021Accepted: 1 February 2021Available online: 4 February 2021
  • Nanosized tungsten carbide (WC)/carbon (C) catalyst was synthesized via a novel ultra-rapid confinement combustion synthesis method. The amount of activated carbon (AC) plays an important role in the morphology and structure, controlling both the precursor and final powder. The WC particles synthesized inside the pores of the AC had been 10–20 nm because of the confinement of the pore structure and the large specific surface area of AC. When used for oxygen reduction performance, the half-wave potential was −0.24 V, and the electron transfer number was 3.45, indicating the main reaction process was the transfer of four electrons. The detailed electrocatalytic performance and underlying mechanism were investigated in this work. Our study provides a novel approach for the design of catalysts with new compositions and new structures, which are significant for promoting the commercialization of fuel cells.
  • loading
  • [1]
    Z.S. Li, Z.S. Liu, B.L. Li, Z.H. Liu, D.H. Li, H.Q. Wang, and Q.Y. Li, Hollow hemisphere-shaped macroporous graphene/tungsten carbide/platinum nanocomposite as an efficient electrocatalyst for the oxygen reduction reaction, Electrochimi. Acta, 221(2016), p. 31. doi: 10.1016/j.electacta.2016.10.157
    [2]
    Z. Chen, M.L. Qin, P.Q. Chen, B.R. Jia, Q. He, and X.H. Qu, Tungsten carbide/carbon composite synthesized by combustion-carbothermal reduction method as electrocatalyst for hydrogen evolution reaction, Int. J. Hydrogen Energy, 41(2016), No. 30, p. 13005. doi: 10.1016/j.ijhydene.2016.06.063
    [3]
    S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic, and Y. Román-Leshkov, Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts, Science, 352(2016), No. 6288, p. 974. doi: 10.1126/science.aad8471
    [4]
    Y.N. Wang, L.P. Zhang, X.X. Meng, L. Feng, T. Wang, W.M. Zhang, and N.T. Yang, Scalable processing hollow tungsten carbide spherical superstructure as an enhanced electrocatalyst for hydrogen evolution reaction over a wide pH range, Electrochimi. Acta, 319(2019), p. 775. doi: 10.1016/j.electacta.2019.07.038
    [5]
    X. Fan, H. Zhou, and X. Guo, WC nanocrystals grown on vertically aligned carbon nanotubes: An efficient and stable electrocatalyst for hydrogen evolution reaction, ACS Nano, 9(2015), No. 5, p. 5125. doi: 10.1021/acsnano.5b00425
    [6]
    J.J. Guo, Z. Mao, X.L. Yan, R. Su, P.F. Guan, B.S. Xu, X.F. Zhang, G.W. Qin, and S.J. Pennycook, Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction, Nano Energy, 28(2016), p. 261. doi: 10.1016/j.nanoen.2016.08.045
    [7]
    S.K. Kim, Y. Qiu, Y.J. Zhang, R. Hurt, and A. Peterson, Nanocomposites of transition-metal carbides on reduced graphite oxide as catalysts for the hydrogen evolution reaction, Appl. Catal. B Environ., 235(2018), p. 36. doi: 10.1016/j.apcatb.2018.04.032
    [8]
    S. Najiba, S.J. Juhl, M. Mandal, C. Liu, A. Durygin, J.H. Chen, Y.W. Fei, N. Alem, and K. Landskron, Synthesis of nanopolycrystalline mesoporous diamond from periodic mesoporous carbon: Mesoporosity increases with increasing synthesis pressure, Scr. Mater., 162(2019), p. 350. doi: 10.1016/j.scriptamat.2018.10.024
    [9]
    J. Sun, B.L. Liang, Y.Q. Huang, and X.D. Wang, Synthesis of nanostructured tungsten carbonitride (WNxCy) by carbothermal ammonia reduction on activated carbon and its application in hydrazine decomposition, Catal. Today, 274(2016), p. 123. doi: 10.1016/j.cattod.2016.01.031
    [10]
    L.N. Zhang, Y.Y. Ma, Z.L. Lang, Y.H. Wang, S.U. Khan, G. Yan, H.Q. Tan, H.Y. Zang, and Y.G. Li, Ultrafine cable-like WC/W2C heterojunction nanowires covered by graphitic carbon towards highly efficient electrocatalytic hydrogen evolution, J. Mater. Chem. A, 6(2018), No. 31, p. 15395. doi: 10.1039/C8TA05007D
    [11]
    U. Kanerva, M. Karhu, J. Lagerbom, A. Kronlöf, M. Honkanen, E. Turunen, and T. Laitinen, Chemical synthesis of WC–Co from water-soluble precursors: The effect of carbon and cobalt additions to WC synthesis, Int. J. Refract. Met. Hard Mater., 56(2016), p. 69. doi: 10.1016/j.ijrmhm.2015.11.014
    [12]
    S.T. Hunt, M. Milina, Z.S. Wang, and Y. Román-Leshkov, Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: Sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles, Energy Environ. Sci., 9(2016), No. 10, p. 3290. doi: 10.1039/C6EE01929C
    [13]
    Y.T. Xu, X.F. Xiao, Z.M. Ye, S.L. Zhao, R.A. Shen, C.T. He, J.P. Zhang, Y.D. Li, and X.M. Chen, Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution, J. Am. Chem. Soc., 139(2017), No. 15, p. 5285. doi: 10.1021/jacs.7b00165
    [14]
    X.H. Zhao, B. Pattengale, D.H. Fan, Z.H. Zou, Y.Q. Zhao, J. Du, J.E. Huang, and C.L. Xu, Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction, ACS Energy Lett., 3(2018), No. 10, p. 2520. doi: 10.1021/acsenergylett.8b01540
    [15]
    Z.H. Li, M.F. Shao, L. Zhou, R.K. Zhang, C. Zhang, M. Wei, D.G. Evans, and X. Duan, Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction, Adv. Mater., 28(2016), No. 12, p. 2337. doi: 10.1002/adma.201505086
    [16]
    S.W. Liu, H.M. Zhang, Q. Zhao, X. Zhang, R.R. Liu, X. Ge, G.Z. Wang, H.J. Zhao, and W.P. Cai, Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions, Carbon, 106(2016), p. 74. doi: 10.1016/j.carbon.2016.05.021
    [17]
    B.W. Ren, D.Q. Li, Q.Y. Jin, H. Cui, and C.X. Wang, Novel porous tungsten carbide hybrid nanowires on carbon cloth for high-performance hydrogen evolution, J. Mater. Chem. A, 5(2017), No. 25, p. 13196. doi: 10.1039/C7TA03364H
    [18]
    A. Varma, A.S. Mukasyan, A.S. Rogachev, and K.V. Manukyan, Solution combustion synthesis of nanoscale materials, Chem. Rev., 116(2016), No. 23, p. 14493. doi: 10.1021/acs.chemrev.6b00279
    [19]
    P.Q. Chen, M.L. Qin, Z. Chen, B.R. Jia, and X.H. Qu, Solution combustion synthesis of nanosized WOx: Characterization, mechanism and excellent photocatalytic properties, RSC Adv., 6(2016), No. 86, p. 83101. doi: 10.1039/C6RA12375A
    [20]
    X.Z. Cui, L.L. Zhang, L.M. Zeng, X.H. Zhang, H.R. Chen, and J.L. Shi, Fabrication of tungsten carbide nanoparticle-encased graphite-like mesoporous carbon as a precious metal-free electrocatalyst for oxygen reduction, J. Inorg. Mater., 33(2018), No. 2, art. No. 213. doi: 10.15541/jim20170305
    [21]
    I. Jeong, J. Lee, K.L. Vincent Joseph, H.I. Lee, J.K. Kim, S. Yoon, and J. Lee, Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell, Nano Energy, 9(2014), p. 392. doi: 10.1016/j.nanoen.2014.08.010
    [22]
    T. Li, X.B. Fu, Y.J. Xu, and D.L. Chen, Porous three-dimensional core-shell WC@C nanocomposite derived from tungsten-containing inorganic-organic hybrid precursor, Mater. Lett., 185(2016), p. 331. doi: 10.1016/j.matlet.2016.09.009
    [23]
    M. Nie, P.K. Shen, M. Wu, Z.D. Wei, and H. Meng, A study of oxygen reduction on improved Pt–WC/C electrocatalysts, J. Power Sources, 162(2006), No. 1, p. 173. doi: 10.1016/j.jpowsour.2006.07.015
    [24]
    J.T. Zhang, J.W. Jiang, H.L. Li, and X.S. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes, Energy Environ. Sci., 4(2011), No. 10, art. No. 4009. doi: 10.1039/c1ee01354h
    [25]
    S.S. Xu, M.Z. Wang, G. Saranya, N. Chen, L.L. Zhang, Y. He, L.L. Wu, Y.T. Gong, Z.Q. Yao, G.K. Wang, Z.B. Wang, S.J. Zhao, H. Tang, M.Y. Chen, and H.Y. Gou, Pressure-driven catalyst synthesis of Co-doped Fe3C@Carbon nano-onions for efficient oxygen evolution reaction, Appl. Catal. B Environ., 268(2020), art. No. 118385. doi: 10.1016/j.apcatb.2019.118385
    [26]
    Q.S. Huang, P.J. Zhou, H. Yang, L.L. Zhu, and H.Y. Wu, CoO nanosheets in situ grown on nitrogen-doped activated carbon as an effective cathodic electrocatalyst for oxygen reduction reaction in microbial fuel cells, Electrochim. Acta, 232(2017), p. 339. doi: 10.1016/j.electacta.2017.02.163
    [27]
    Y. Shen, L. Li, J.Y. Xi, and X.P. Qiu, A facile approach to fabricate free-standing hydrogen evolution electrodes: Riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets, J. Mater. Chem. A, 4(2016), No. 16, p. 5817. doi: 10.1039/C6TA01236A
    [28]
    Z.W. Liu, X.T. Huo, K. Xi, P. Li, L.N. Yue, M. Huang, G.Q. Suo, L. Xu, W. Wang, and X.H. Qu, Thickness controllable and mass produced WC@C@Pt hybrid for efficient hydrogen production, Energy Storage Mater., 10(2018), p. 268. doi: 10.1016/j.ensm.2017.06.011
    [29]
    H. Zhu, Z.N. Sun, M.L. Chen, H.H. Cao, K. Li, Y.Z. Cai, and F.H. Wang, Highly porous composite based on tungsten carbide and N-doped carbon aerogels for electrocatalyzing oxygen reduction reaction in acidic and alkaline media, Electrochim. Acta, 236(2017), p. 154. doi: 10.1016/j.electacta.2017.02.156
    [30]
    L. Song, T. Wang, Y.L. Wang, H.R. Xue, X.L. Fan, H. Guo, W. Xia, H. Gong, and J.P. He, Porous iron-tungsten carbide electrocatalyst with high activity and stability toward oxygen reduction reaction: From the self-assisted synthetic mechanism to its active-species probing, ACS Appl. Mater. Interfaces, 9(2017), No. 4, p. 3713. doi: 10.1021/acsami.6b14754
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1065) PDF Downloads(51) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return