Cite this article as: |
Ying-jun Qiao, Huan Zhang, Yu-xin Hu, Wan-peng Li, Wen-jing Liu, Hui-ming Shang, Mei-zhen Qu, Gong-chang Peng, and Zheng-wei Xie, A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1611-1620. https://doi.org/10.1007/s12613-021-2266-6 |
Gong-chang Peng E-mail: pgc0102@163.com
Zheng-wei Xie E-mail: xiezhengwei@cioc.ac.cn
Silicon anodes are considered to have great prospects for use in batteries; however, many of their defects still need to be improved. The preparation of hybrid materials based on porous carbon is one of the effective ways to alleviate the adverse impact resulting from the volume change and the inferior electronic conductivity of a silicon electrode. Herein, a chain-like carbon cluster structure is prepared, in which MOF-derived porous carbon acts as a shell structure to integrally encapsulate Si nanoparticles, and CNTs play a role in connecting carbon shells. Based on the exclusive structure, the carbon shell can accommodate the volume expansion more effectively, and CNTs can improve the overall stability and conductivity. The resulting composite reveals excellent rate capacity and enhanced cycling stability; in particular, a capacity of 732 mA·h·g−1 at 2 A·g−1 is achieved with a reservation rate of 72.3% after cycling 100 times at 1 A·g−1.
[1] |
M.T. Jeena, T. Bok, S.H. Kim, S. Park, J.Y. Kim, S. Park, and J.H. Ryu, A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries, Nanoscale, 8(2016), No. 17, p. 9245. doi: 10.1039/C6NR01559J
|
[2] |
Q.H. Chen, Y. Cheng, H.D. Liu, Q.B. Zhang, V. Petrova, H.X. Chen, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Hierarchical design of Mn2P nanoparticles embedded in N, P-codoped porous carbon nanosheets enables highly durable lithium storage, ACS Appl. Mater. Interfaces, 12(2020), No. 32, p. 36247. doi: 10.1021/acsami.0c11678
|
[3] |
L.Z. Zhao, H.H. Wu, C.H. Yang, Q.B. Zhang, G.M. Zhong, Z.M. Zheng, H.X. Chen, J.M. Wang, K. He, B.L. Wang, T. Zhu, X.C. Zeng, M.L. Liu, and M.S. Wang, Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes, ACS Nano, 12(2018), No. 12, p. 12597. doi: 10.1021/acsnano.8b07319
|
[4] |
Q.B. Zhang, Z.L. Gong, and Y. Yang, Advance in interface and characterizations of sulfide solid electrolyte materials, Acta Phys. Sin., 69(2020), No. 22, art. No. 228803.
|
[5] |
C.M. Hayner, X. Zhao, and H.H. Kung, Materials for rechargeable lithium-ion batteries, Annu. Rev. Chem. Biomol. Eng., 3(2012), No. 1, p. 445. doi: 10.1146/annurev-chembioeng-062011-081024
|
[6] |
J.W. Choi and D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater., 1(2016), No. 4, p. 1.
|
[7] |
Z.M. Zheng, H.H. Wu, H.D. Liu, Q.B. Zhang, X. He, S.C. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets, ACS Nano, 14(2020), No. 8, p. 9545. doi: 10.1021/acsnano.9b08575
|
[8] |
Y. Jiang, D.Y. Song, J. Wu, Z.X. Wang, S.S. Huang, Y. Xu, Z.W. Chen, B. Zhao, and J.J. Zhang, Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials, ACS Nano, 13(2019), No. 8, p. 9100. doi: 10.1021/acsnano.9b03330
|
[9] |
Z.M. Zheng, P. Li, J. Huang, H.D. Liu, Y. Zao, Z.L. Hu, L. Zhang, H.X. Chen, M.S. Wang, D.L. Peng, and Q.B. Zhang, High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design, J. Energy Chem., 41(2020), p. 126. doi: 10.1016/j.jechem.2019.05.009
|
[10] |
Z.W. Chen, S.M. Fei, C.H. Wu, P.J. Xin, S.S. Huang, L. Selegård, K. Uvdal, and Z.J. Hu, Integrated design of hierarchical CoSnO3@NC@MnO@NC nanobox as anode material for enhanced lithium storage performance, ACS Appl. Mater. Interfaces, 12(2020), No. 17, p. 19768. doi: 10.1021/acsami.9b22368
|
[11] |
Y. Jiang, Y.Y. Wan, W. Jiang, H.H. Tao, W.R. Li, S.S. Huang, Z.W. Chen, and B. Zhao, Stabilizing the reversible capacity of SnO2/graphene composites by Cu nanoparticles, Chem. Eng. J., 367(2019), p. 45. doi: 10.1016/j.cej.2019.02.141
|
[12] |
M.N. Obrovac and V.L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114(2014), No. 23, p. 11444. doi: 10.1021/cr500207g
|
[13] |
L.F. Guo, S.Y. Zhang, J. Xie, D. Zhen, Y. Jin, K.Y. Wan, D.G. Zhuang, W.Q. Zheng, and X.B. Zhao, Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 515. doi: 10.1007/s12613-019-1900-z
|
[14] |
Q.B. Zhang, H.X. Chen, L.L. Luo, B.T. Zhao, H. Luo, X. Han, J.W. Wang, C.M. Wang, Y. Yang, T. Zhu, and M.L. Liu, Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries, Energy Environ. Sci., 11(2018), No. 3, p. 669. doi: 10.1039/C8EE00239H
|
[15] |
J.Y. Li, Q. Xu, G. Li, Y.X. Yin, L.J. Wan, and Y.G. Guo, Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries, Mater. Chem. Front., 1(2017), No. 9, p. 1691. doi: 10.1039/C6QM00302H
|
[16] |
A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 9(2010), No. 4, p. 353. doi: 10.1038/nmat2725
|
[17] |
A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNiCoMnO2 cathode and SiO−C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473. doi: 10.1007/s12613-018-1702-8
|
[18] |
W.L. An, B. Gao, S.X. Mei, B. Xiang, J.J. Fu, L. Wang, Q.B. Zhang, P.K. Chu, and K.F. Huo, Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes, Nat. Commun., 10(2019), No. 1, art. No. 1447. doi: 10.1038/s41467-019-09510-5
|
[19] |
Y. Jiang, J.L. Jiang, Z.X. Wang, M.R. Han, X.Y. Liu, J. Yi, B. Zhao, X.L. Sun, and J.J. Zhang, Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries, Nano Energy, 70(2020), art. No. 104504. doi: 10.1016/j.nanoen.2020.104504
|
[20] |
Q. Xu, J.K. Sun, J.Y. Li, Y.X. Yin, and Y.G. Guo, Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries, Energy Storage Mater., 12(2018), p. 54. doi: 10.1016/j.ensm.2017.11.015
|
[21] |
X.H. Shen, Z.Y. Tian, R.J. Fan, L. Shao, D.P. Zhang, G.L. Cao, L. Kou, and Y.Z. Bai, Research progress on silicon/carbon composite anode materials for lithium-ion battery, J. Energy Chem., 27(2018), No. 4, p. 1067. doi: 10.1016/j.jechem.2017.12.012
|
[22] |
X.S. Zhou, L.J. Wan, and Y.G. Guo, Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries, Small, 9(2013), No. 16, p. 2684. doi: 10.1002/smll.201202071
|
[23] |
J.H. Zhu, J. Yang, Z.X. Xu, J.L. Wang, Y.N. Nuli, X.D. Zhuang, and X.L. Feng, Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries, Nanoscale, 9(2017), No. 25, p. 8871. doi: 10.1039/C7NR01545C
|
[24] |
R.R. Salunkhe, Y.V. Kaneti, J. Kim, J.H. Kim, and Y. Yamauchi, Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications, Acc. Chem. Res., 49(2016), No. 12, p. 2796. doi: 10.1021/acs.accounts.6b00460
|
[25] |
G.Y. Xu, P. Nie, H. Dou, B. Ding, L.Y. Li, and X.G. Zhang, Exploring metal organic frameworks for energy storage in batteries and supercapacitors, Mater. Today, 20(2017), No. 4, p. 191. doi: 10.1016/j.mattod.2016.10.003
|
[26] |
X.K. Song, S. Chen, L.L. Guo, Y. Sun, X.P. Li, X. Cao, Z.X. Wang, J.H. Sun, C. Lin, and Y. Wang, General dimension-controlled synthesis of hollow carbon embedded with metal singe atoms or core-shell nanoparticles for energy storage applications, Adv. Energy Mater., 8(2018), No. 27, art. No. 1801101. doi: 10.1002/aenm.201801101
|
[27] |
N.T. Liu, J. Liu, D.Z. Jia, Y.D. Huang, J. Luo, X. Mamat, Y. Yu, Y.M. Dong, and G.Z. Hu, Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries, Energy Storage Mater., 18(2019), p. 165. doi: 10.1016/j.ensm.2018.09.019
|
[28] |
Y.Z. Han, P.F. Qi, X. Feng, S.W. Li, X.T. Fu, H.W. Li, Y.F. Chen, J.W. Zhou, X.G. Li, and B. Wang, In situ growth of MOFs on the surface of Si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 4, p. 2178. doi: 10.1021/am5081937
|
[29] |
R.S. Gao, J. Tang, X.L. Yu, S. Tang, K. Ozawa, T. Sasaki, and L.C. Qin, In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage, Nano Energy, 70(2020), art. No. 104444. doi: 10.1016/j.nanoen.2019.104444
|
[30] |
D. Jin, X.F. Yang, Y.Q. Ou, M.M. Rao, Y.T. Zhong, G.M. Zhou, D.Q. Ye, Y.C. Qiu, Y.P. Wu, and W.S. Li, Thermal pyrolysis of Si@ZIF-67 into Si@N-doped CNTs towards highly stable lithium storage, Sci. Bull., 65(2020), No. 6, p. 452. doi: 10.1016/j.scib.2019.12.005
|
[31] |
M. Kumar and Y. Ando, Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production, J. Nanosci. Nanotechnol., 10(2010), No. 6, p. 3739. doi: 10.1166/jnn.2010.2939
|
[32] |
X.F. Feng, K. Liu, X. Xie, R.F. Zhou, L.N. Zhang, Q.Q. Li, S.S. Fan, and K.L. Jiang, Thermal analysis study of the growth kinetics of carbon nanotubes and epitaxial graphene layers on them, J. Phys. Chem. C, 113(2009), No. 22, p. 9623. doi: 10.1021/jp901245u
|
[33] |
S.Y. Kim, J. Lee, B.H. Kim, Y.J. Kim, K.S. Yang, and M.S. Park, Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 19, p. 12109. doi: 10.1021/acsami.5b11628
|
[34] |
A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A.J.R. Botz, R.A. Fischer, W. Schuhmann, and M. Muhler, Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode, Angew. Chem. Int. Ed., 55(2016), No. 12, p. 4087. doi: 10.1002/anie.201509382
|
[35] |
L.W. Su, Z. Zhou, and M.M. Ren, Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries, Chem. Commun., 46(2010), No. 15, p. 2590. doi: 10.1039/b925696b
|
[36] |
N. Iqbal, X.F. Wang, J.Y. Yu, N. Jabeen, H. Ullah, and B. Ding, In situ synthesis of carbon nanotube doped metal–organic frameworks for CO2 capture, RSC Adv., 6(2016), No. 6, p. 4382. doi: 10.1039/C5RA25465E
|
[37] |
F.X. Bu, W.S. Chen, J.J. Gu, P.O. Agboola, N.F. Al-Khalli, I. Shakir, and Y.X. Xu, Microwave-assisted CVD-like synthesis of dispersed monolayer/few-layer N-doped graphene encapsulated metal nanocrystals for efficient electrocatalytic oxygen evolution, Chem. Sci., 9(2018), No. 34, p. 7009. doi: 10.1039/C8SC02444H
|
[38] |
H. Shang, Z.C. Zuo, L. Yu, F. Wang, F. He, and Y.L. Li, Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries, Adv. Mater., 30(2018), No. 27, art. No. 1801459. doi: 10.1002/adma.201801459
|
[39] |
T.S. Mu, P.J. Zuo, S.F. Lou, Q.R. Pan, H. Zhang, C.Y. Du, Y.Z. Gao, X.Q. Cheng, Y.L. Ma, H. Huo, and G.P. Yin, A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high-performance anode material for lithium ion batteries, J. Alloys Compd., 777(2019), p. 190. doi: 10.1016/j.jallcom.2018.10.177
|
[40] |
W.F. Miao, X.Y. Zhao, R. Wang, Y.Q. Liu, L. Li, Z.S. Zhang, and W.M. Zhang, Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: A promising anode for potassium ion battery, J. Colloid Interface Sci., 556(2019), p. 432. doi: 10.1016/j.jcis.2019.08.090
|
[41] |
H.L. Wu, Y. Li, J. Ren, D.W. Rao, Q.J. Zheng, L. Zhou, and D.M. Lin, CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries, Nano Energy, 55(2019), p. 82. doi: 10.1016/j.nanoen.2018.10.061
|
[42] |
W. Weng, H.J. Lin, X.L. Chen, J. Ren, Z.T. Zhang, L.B. Qiu, G.Z. Guan, and H.S. Peng, Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes, J. Mater. Chem. A, 2(2014), No. 24, art. No. 9306. doi: 10.1039/c4ta00711e
|
[43] |
X. Men, T. Wang, B.H. Xu, Z. Kong, X.H. Liu, A.P. Fu, Y.H. Li, P.Z. Guo, Y.G. Guo, H.L. Li, and X.S. Zhao, Hierarchically structured microspheres consisting of carbon coated silicon nanocomposites with controlled porosity as superior anode material for lithium-ion batteries, Electrochim. Acta, 324(2019), art. No. 134850. doi: 10.1016/j.electacta.2019.134850
|
[44] |
X.S. Zhou, A.M. Cao, L.J. Wan, and Y.G. Guo, Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries, Nano Res., 5(2012), No. 12, p. 845. doi: 10.1007/s12274-012-0268-4
|
[45] |
T.F. Liu, Q.L. Chu, C. Yan, S.Q. Zhang, Z. Lin, and J. Lu, Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802645. doi: 10.1002/aenm.201802645
|
[46] |
Y. Jiang, Z.X. Wang, C.X. Xu, W.X. Li, Y. Li, S.S. Huang, Z.W. Chen, B. Zhao, X.L. Sun, D.P. Wilkinson, and J.J. Zhang, Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating, Energy Storage Mater., 28(2020), p. 17. doi: 10.1016/j.ensm.2020.01.019
|
[47] |
L. Feng, X. Han, X.R. Su, B.C. Pang, Y.L. Luo, F. Hu, M.J. Zhou, K. Tao, and Y.Y. Xia, Metal-organic frameworks derived porous carbon coated SiO composite as superior anode material for lithium ion batteries, J. Alloys Compd., 765(2018), p. 512. doi: 10.1016/j.jallcom.2018.04.014
|
[48] |
M.K. Majeed, G.Y. Ma, Y.X. Cao, H.Z. Mao, X.J. Ma, and W.Z. Ma, Metal-organic frameworks-derived mesoporous Si/SiOx@NC nanospheres as a long-lifespan anode material for lithium-ion batteries, Chem., 25(2019), No. 51, p. 11991. doi: 10.1002/chem.201903043
|
[49] |
X. Zhu, S.H. Choi, R. Tao, X.L. Jia, and Y.F. Lu, Building high-rate silicon anodes based on hierarchical Si@C@CNT nanocomposite, J. Alloys Compd., 791(2019), p. 1105. doi: 10.1016/j.jallcom.2019.03.354
|
[50] |
H. Zhang, P. Zong, M. Chen, H. Jin, Y. Bai, S.W. Li, F. Ma, H. Xu, and K. Lian, In situ synthesis of multilayer carbon matrix decorated with copper particles: Enhancing the performance of Si as anode for Li-ion batteries, ACS Nano, 13(2019), No. 3, p. 3054. doi: 10.1021/acsnano.8b08088
|
[51] |
J.B. Li, W.J. Liu, Q. Wan, F.M. Liu, X. Li, Y.J. Qiao, M.Z. Qu, and G.C. Peng, Facile spray-drying synthesis of dual-shell structure Si@SiOx@graphite/graphene as stable anode for Li-ion batteries, Energy Technol., 7(2019), No. 9, art. No. 1900464. doi: 10.1002/ente.201900464
|