Dan Wang, Qun Ma, Kang-hui Tian, Chan-Qin Duan, Zhi-yuan Wang, and Yan-guo Liu, Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp.1666-1674. https://dx.doi.org/10.1007/s12613-021-2286-2
Cite this article as: Dan Wang, Qun Ma, Kang-hui Tian, Chan-Qin Duan, Zhi-yuan Wang, and Yan-guo Liu, Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp.1666-1674. https://dx.doi.org/10.1007/s12613-021-2286-2
Research Article

Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries

Author Affilications
Funds: This study was financially supported by the National Natural Science Foundation of China (Nos. 51871046, 51902046, 52071073, 51874079, 51571054, 51771046, and 51674068), the Natural Science Foundation of Liaoning Province, China (No. 201602257), Natural Science Foundation of Hebei Province, China (Nos. E2019501097, E2018501091, E2020501004), the Science and Technology Project of Hebei Province, China (No. 15271302D), and the Fundamental Research Funds for the Central Universities, China (Nos. N182304017, N182304015, N172302001, N172304044)
  • Corresponding author:

    Zhi-yuan Wan E-mail: zhiyuanwang@neuq.edu.cn

    Yan-guo Liu E-mail: lyg@neuq.edu.cn

  • Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). The alloy exerts excellent cycling durability (the capacity can be maintained at 328.3 mA·h·g−1 after 100 cycles for SIBs and 260 mA·h·g−1 for PIBs) and rate capability (199 mA·h·g−1 at 5 A·g−1 for SIBs and 148 mA·h·g−1 at 5 A·g−1 for PIBs) because of the smooth electron transport path, fast Na/K ion diffusion rate, and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy. This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries, and it also introduces broad application prospects for other electrochemical applications.

  • [1]
    J.M. Chen, Y. Cheng, Q.B. Zhang, C. Luo, H.Y. Li, Y. Wu, H.H. Zhang, X. Wang, H.D. Liu, X. He, J.J. Han, D.L. Peng, M.L. Liu, and M.S. Wang, Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co-doped hollow porous bowl-like carbon anodes, Adv. Funct. Mater., 31(2021), No. 1, art. No. 2007158. DOI: 10.1002/adfm.202007158
    [2]
    B. Chen, D.L. Chao, E.Z. Liu, M. Jaroniec, N.Q. Zhao, and S.Z. Qiao, Transition metal dichalcogenides for alkali metal ion batteries: Engineering strategies at the atomic level, Energy Environ. Sci., 13(2020), No. 4, p. 1096. DOI: 10.1039/C9EE03549D
    [3]
    J.C. Pramudita, D. Sehrawat, D. Goonetilleke, and N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries, Adv. Energy Mater., 7(2017), No. 24, art. No. 1602911. DOI: 10.1002/aenm.201602911
    [4]
    X.D. He, Z.H. Liu, J.Y. Liao, X. Ding, Q. Hu, L.N. Xiao, S. Wang, and C.H. Chen, A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries, J. Mater. Chem. A, 7(2019), No. 16, p. 9629. DOI: 10.1039/C9TA01968E
    [5]
    J. Zheng, Y. Yang, X.L. Fan, G.B. Ji, X. Ji, H.Y. Wang, S. Hou, M.R. Zachariah, and C.S. Wang, Extremely stable antimony–carbon composite anodes for potassium-ion batteries, Energy Environ. Sci., 12(2019), No. 2, p. 615. DOI: 10.1039/C8EE02836B
    [6]
    Y.L. An, Y. Tian, L.J. Ci, S.L. Xiong, J.K. Feng, and Y.T. Qian, Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries, ACS Nano, 12(2018), No. 12, p. 12932. DOI: 10.1021/acsnano.8b08740
    [7]
    G.H. Wang, X.H. Xiong, Z.H. Lin, C.H. Yang, Z. Lin, and M.L. Liu, Sb/C composite as a high-performance anode for sodium ion batteries, Electrochim. Acta, 242(2017), p. 159. DOI: 10.1016/j.electacta.2017.04.164
    [8]
    J. Qin, T.S. Wang, D.Y. Liu, E.Z. Liu, N.Q. Zhao, C.S. Shi, F. He, L.Y. Ma, and C.N. He, A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode, Adv. Mater., 30(2018), No. 9, art. No. 1704670. DOI: 10.1002/adma.201704670
    [9]
    P.X. Xiong, J.X. Wu, M.F. Zhou, and Y.H. Xu, Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries, ACS Nano, 14(2020), No. 1, p. 1018. DOI: 10.1021/acsnano.9b08526
    [10]
    J. Han, K.J. Zhu, P. Liu, Y.C. Si, Y.J. Chai, and L.F. Jiao, N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries, J. Mater. Chem. A, 7(2019), No. 44, p. 25268. DOI: 10.1039/C9TA09643D
    [11]
    Y.P. Li, Q.B. Zhang, Y.F. Yuan, H.D. Liu, C.H. Yang, Z. Lin, and J. Lu, Surface amorphization of vanadium dioxide (B) for K-ion battery, Adv. Energy Mater., 10(2020), No. 23, art. No. 2000717. DOI: 10.1002/aenm.202000717
    [12]
    X.F. Ge, S.H. Liu, M. Qiao, Y.C. Du, Y.F. Li, J.C. Bao, and X.S. Zhou, Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers, Angew. Chem. Int. Ed., 58(2019), No. 41, p. 14578. DOI: 10.1002/anie.201908918
    [13]
    M.C. Schulze, R.M. Belson, L.A. Kraynak, and A.L. Prieto, Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries, Energy Storage Mater., 25(2020), p. 572. DOI: 10.1016/j.ensm.2019.09.025
    [14]
    X.W. Liu, M. Gao, H. Yang, X.W. Zhong, and Y. Yu, 2D sandwich-like nanosheets of ultrafine Sb nanoparticles anchored to graphene for high-efficiency sodium storage, Nano Res., 10(2017), No. 12, p. 4360. DOI: 10.1007/s12274-017-1627-y
    [15]
    C. Nita, J. Fullenwarth, L. Monconduit, L. Vidal, and C. Matei Ghimbeu, Influence of carbon characteristics on Sb/carbon nanocomposites formation and performances in Na-ion batteries, Mater. Today Energy, 13(2019), p. 221. DOI: 10.1016/j.mtener.2019.05.009
    [16]
    Q.Q. Yang, J. Zhou, G.Q. Zhang, C. Guo, M. Li, Y.C. Zhu, and Y.T. Qian, Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries, J. Mater. Chem. A, 5(2017), No. 24, p. 12144. DOI: 10.1039/C7TA03060F
    [17]
    Z.Y. Wang, K.Z. Dong, D. Wang, S.H. Luo, X. Liu, Y.G. Liu, Q. Wang, Y.H. Zhang, A.M. Hao, C.N. He, C.S. Shi, and N.Q. Zhao, Constructing N-Doped porous carbon confined FeSb alloy nanocomposite with Fe–N–C coordination as a universal anode for advanced Na/K-ion batteries, Chem. Eng. J., 384(2020), art. No. 123327. DOI: 10.1016/j.cej.2019.123327
    [18]
    Z.Y. Wang, K.Z. Dong, D. Wang, S.H. Luo, Y.G. Liu, Q. Wang, Y.H. Zhang, A.M. Hao, C.S. Shi, and N.Q. Zhao, A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries, J. Mater. Chem. A, 7(2019), No. 23, p. 14309. DOI: 10.1039/C9TA03851E
    [19]
    Z.Y. Wang, C.Q. Duan, D. Wang, K.Z. Dong, S.H. Luo, Y.G. Liu, Q. Wang, Y.H. Zhang, and A.M. Hao, BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution, J. Colloid Interface Sci., 580(2020), p. 429. DOI: 10.1016/j.jcis.2020.07.061
    [20]
    L. Baggetto, E. Allcorn, A. Manthiram, and G.M. Veith, Cu2Sb thin films as anode for Na-ion batteries, Electrochem. Commun., 27(2013), p. 168. DOI: 10.1016/j.elecom.2012.11.030
    [21]
    Y.R. Lv, Y.H. Li, C. Han, J.F. Chen, Z.X. He, J. Zhu, L. Dai, W. Meng, and L. Wang, Application of porous biomass carbon materials in vanadium redox flow battery, J. Colloid Interface Sci., 566(2020), p. 434. DOI: 10.1016/j.jcis.2020.01.118
    [22]
    H.L. Wang, W.H. Yu, N. Mao, J. Shi, and W. Liu, Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery, Microporous Mesoporous Mater., 227(2016), p. 1. DOI: 10.1016/j.micromeso.2016.02.003
    [23]
    S.C. Luo, T.Y. Wang, H.Y. Lu, X.Q. Xu, G. Xue, N. Xu, Y. Wang, and D.S. Zhou, Ultrasmall SnO2 nanocrystals embedded in porous carbon as potassium ion battery anodes with long-term cycling performance, New J. Chem., 44(2020), No. 27, p. 11678. DOI: 10.1039/D0NJ00323A
    [24]
    L.B. Wang, C.C. Wang, N. Zhang, F.J. Li, F.Y. Cheng, and J. Chen, High anode performance of in situ formed Cu2Sb nanoparticles integrated on Cu foil via replacement reaction for sodium-ion batteries, ACS Energy Lett., 2(2017), No. 1, p. 256. DOI: 10.1021/acsenergylett.6b00649
    [25]
    J.J. Ye, G. Xia, Z.Q. Zheng, and C. Hu, Facile controlled synthesis of coral-like nanostructured Sb2O3@Sb anode materials for high performance sodium-ion batteries, Int. J. Hydrogen Energy, 45(2020), No. 16, p. 9969. DOI: 10.1016/j.ijhydene.2020.01.141
    [26]
    R. Izquierdo, E. Sacher, and A. Yelon, X-ray photoelectron spectra of antimony oxides, Appl. Surf. Sci., 40(1989), No. 1-2, p. 175. DOI: 10.1016/0169-4332(89)90173-6
    [27]
    L. Wu, X.H. Hu, J.F. Qian, F. Pei, F.Y. Wu, R.J. Mao, X.P. Ai, H.X. Yang, and Y.L. Cao, Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries, Energy Environ. Sci., 7(2014), No. 1, p. 323. DOI: 10.1039/C3EE42944J
    [28]
    X.L. Fan, T. Gao, C. Luo, F. Wang, J.K. Hu, and C.S. Wang, Superior reversible tin phosphide-carbon spheres for sodium ion battery anode, Nano Energy, 38(2017), p. 350. DOI: 10.1016/j.nanoen.2017.06.014
    [29]
    Z.M. Liu, X.Y. Yu, X.W. Lou, and U. Paik, Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries, Energy Environ. Sci., 9(2016), No. 7, p. 2314. DOI: 10.1039/C6EE01501H
    [30]
    J. Zhu, C.Q. Shang, Z.Y. Wang, J.J. Zhang, Y. Liu, S. Gu, L.J. Zhou, H. Cheng, Y.Y. Gu, and Z.G. Lu, SnS/SnSb@C nanofibers with enhanced cycling stability via vulcanization as an anode for sodium-ion batteries, ChemElectroChem, 5(2018), No. 7, p. 1098. DOI: 10.1002/celc.201701270
    [31]
    A.H. Jin, M.J. Kim, K.S. Lee, S.H. Yu, and Y.E. Sung, Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes, Nano Res., 12(2019), No. 3, p. 695. DOI: 10.1007/s12274-019-2278-y
    [32]
    W.P. Song, J.L. Kan, H.L. Wang, X.C. Zhao, Y.L. Zheng, H. Zhang, L. Tao, M.H. Huang, W. Liu, and J. Shi, Nitrogen and sulfur co-doped mesoporous carbon for sodium ion batteries, ACS Appl. Nano Mater., 2(2019), No. 9, p. 5643. DOI: 10.1021/acsanm.9b01178
    [33]
    Y. Liu and Z.Q. Gao, Synthesis of hierarchically porous nitrogen-doped carbon for sodium-ion batteries, ChemElectroChem, 4(2017), No. 5, p. 1059. DOI: 10.1002/celc.201600834
    [34]
    D.D. Li, J.Z. Li, J.M. Cao, X.Y. Fu, L. Zhou, and W. Han, Highly flexible free-standing Sb/Sb2O3@N-doped carbon nanofiber membranes for sodium ion batteries with excellent stability, Sustainable Energy Fuels, 4(2020), No. 11, p. 5732. DOI: 10.1039/D0SE01089H
    [35]
    W.X. Yang, J.H. Zhou, S. Wang, Z.C. Wang, F. Lv, W.S. Zhang, W.Y. Zhang, Q. Sun, and S.J. Guo, A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage, ACS Energy Lett., 5(2020), No. 5, p. 1653. DOI: 10.1021/acsenergylett.0c00413
    [36]
    J. Hu, B. Wang, Q.Y. Yu, D. Zhang, Y.H. Zhang, Y. Li, and W.A. Wang, CoSe2/N-doped carbon porous nanoframe as an anode material for potassium-ion storage, Nanotechnology, 31(2020), No. 39, art. No. 395403. DOI: 10.1088/1361-6528/ab9578
    [37]
    C.L. Gao, Q. Wang, S.H. Luo, Z.Y. Wang, Y.H. Zhang, Y.G. Liu, A.M. Hao, and R. Guo, High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum, J. Power Sources, 415(2019), p. 165. DOI: 10.1016/j.jpowsour.2019.01.073
    [38]
    T.X. Wang, W.T. Guo, G. Wang, H. Wang, J.T. Bai, and B.B. Wang, Highly dispersed FeSe2 nanoparticles in porous carbon nanofibers as advanced anodes for sodium and potassium ion batteries, J. Alloys Compd., 834(2020), art. No. 155265. DOI: 10.1016/j.jallcom.2020.155265
    [39]
    Z.L. Jian, S. Hwang, Z.F. Li, A.S. Hernandez, X.F. Wang, Z.Y. Xing, D. Su, and X.L. Ji, Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries, Adv. Funct. Mater., 27(2017), No. 26, art. No. 1700324. DOI: 10.1002/adfm.201700324
    [40]
    S. Bao, S.H. Luo, S.X. Yan, Z.Y. Wang, Q. Wang, J. Feng, Y.L. Wang, and T.F. Yi, Nano-sized MoO2 spheres interspersed three-dimensional porous carbon composite as advanced anode for reversible sodium/potassium ion storage, Electrochim. Acta, 307(2019), p. 293. DOI: 10.1016/j.electacta.2019.03.216
    [41]
    K.S. Huang, Z. Xing, L.C. Wang, X. Wu, W. Zhao, X.J. Qi, H. Wang, and Z.C. Ju, Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode, J. Mater. Chem. A, 6(2018), No. 2, p. 434. DOI: 10.1039/C7TA08171E
    [42]
    C.H. Han, K. Han, X.P. Wang, C.Y. Wang, Q. Li, J.S. Meng, X.M. Xu, Q. He, W. Luo, L.M. Wu, and L.Q. Mai, Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries, Nanoscale, 10(2018), No. 15, p. 6820. DOI: 10.1039/C8NR00237A
    [43]
    S.H. Dong, C.X. Li, Z.Q. Li, L.Y. Zhang, and L.W. Yin, Mesoporous hollow Sb/ZnS@C core-shell heterostructures as anodes for high-performance sodium-ion batteries, Small, 14(2018), No. 16, art. No. 1704517. DOI: 10.1002/smll.201704517
    [44]
    V. Gabaudan, R. Berthelot, L. Stievano, and L. Monconduit, Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries, J. Phys. Chem. C, 122(2018), No. 32, p. 18266. DOI: 10.1021/acs.jpcc.8b04575
    [45]
    Y.Y. Yi, W. Zhao, Z.H. Zeng, C.H. Wei, C. Lu, Y.L. Shao, W.Y. Guo, S.X. Dou, and J.Y. Sun, ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage, Small, 16(2020), No. 7, art. No. 1906566. DOI: 10.1002/smll.201906566
    [46]
    D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu, J. Wang, X.F. Fan, S.V. Savilov, J.Y. Lin, H.J. Fan, and Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance, Nat. Commun., 7(2016), art. No. 12122. DOI: 10.1038/ncomms12122
    [47]
    W.W. Zhong, J.D. Huang, S.Q. Liang, J. Liu, Y.J. Li, G.M. Cai, Y. Jiang, and J. Liu, New prelithiated V2O5 superstructure for lithium-ion batteries with long cycle life and high power, ACS Energy Lett., 5(2020), No. 1, p. 31. DOI: 10.1021/acsenergylett.9b02048
    [48]
    V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7(2014), No. 5, p. 1597. DOI: 10.1039/c3ee44164d
    [49]
    T. Brezesinski, J. Wang, S.H. Tolbert, and B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat. Mater., 9(2010), No. 2, p. 146. DOI: 10.1038/nmat2612
    [50]
    Z. Li, C.Z. Zhang, F. Han, F. Wang, F.Q. Zhang, W. Shen, C. Ye, X.K. Li, and J.S. Liu, Towards high-volumetric performance of Na/Li-ion batteries: A better anode material with molybdenum pentachloride–graphite intercalation compounds (MoCl5–GICs), J. Mater. Chem. A, 8(2020), No. 5, p. 2430. DOI: 10.1039/C9TA12651A
    [51]
    C.Z. Zhang, F. Han, J.M. Ma, Z. Li, F.Q. Zhang, S.H. Xu, H.B. Liu, X.K. Li, J.S. Liu, and A.H. Lu, Fabrication of strong internal electric field ZnS/Fe9S10 heterostructures for highly efficient sodium ion storage, J. Mater. Chem. A, 7(2019), No. 19, p. 11771. DOI: 10.1039/C9TA02388G
  • Related Articles

    [1]Le-yu Zhou, Lei Wu, Ya-zheng Liu, Xiao-jie Cheng, Jin-hong Sun. Microstructure and texture evolution of cold-rolled deep-drawing steel sheet during annealing [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(6): 541-548. DOI: 10.1007/s12613-013-0763-y
    [2]A. Ramírez-López, G. Soto-Cortés, J. González-Trejo, D. Muñoz-Negrón. Computational algorithms for simulating the grain structure formed on steel billets using cellular automaton and chaos theories [J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(1): 24-34. DOI: 10.1007/s12613-011-0395-z
    [3]A. Ramírez-López, G. Soto-Cortés, M. Palomar-Pardavé, M. A. Romero-Romo, R. Aguilar-López. Computational algorithms to simulate the steel continuous casting [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(5): 596-607. DOI: 10.1007/s12613-010-0362-0
    [4]Jinqiao Xu, Yazheng Liu, Shumei Zhou. Computer simulation on the controlled cooling of 82B high-speed rod [J]. International Journal of Minerals, Metallurgy and Materials, 2008, 15(3): 330-334. DOI: 10.1016/S1005-8850(08)60062-6
    [5]Jinghong Sun, Yazheng Liu, Leyu Zhou. Simulation of annealing process effect on texture evolution of deep-drawing sheet Stl5 [J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(6): 512-516.
    [6]Yuhong Zhao, Zheng Chen, Xiaoling Li. Computer simulation of strain-induced morphological transformation of coherent precipitates [J]. International Journal of Minerals, Metallurgy and Materials, 2003, 10(4): 55-60.
    [7]Junxiang Lei, Yonglin Kang, Fangqin Qu. Prediction and determination of both friction coefficient and forming force on sheet metal deep-drawing [J]. International Journal of Minerals, Metallurgy and Materials, 2002, 9(5): 360-362.
    [8]Junxiang Lei, Yonglin Kang. Prediction and Control of both Wrinkle Limit and Fracture Limit on Cylindrical Cup Deep-drawing (Ⅱ) [J]. International Journal of Minerals, Metallurgy and Materials, 1999, 6(3): 201-204.
    [9]Junxiang Lei. Prediction and Control of Both Wrinkle Limit and Fracture Limit on Cylindrical Cup Deep-Drawing [J]. International Journal of Minerals, Metallurgy and Materials, 1998, 5(4): 237-240,250.
    [10]CHEN GUOLIANG, GE HONGLIN. COMPUTER SIMULATION OF GRAIN BOUNDARY SEGREGATION BEHAVIOR AND MECHANISMS OF STRENGTHENING OF Mg IN Ni-BASED SUPERALLOYS [J]. International Journal of Minerals, Metallurgy and Materials, 1995, 2(2): 84-91,108.

Catalog

    Share Article

    Article Metrics

    Article views (1467) PDF downloads (44) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return