Cite this article as: |
Shuangyu Cai, Keke Lu, Xinnan Li, Lei Wen, Feifei Huang, and Ying Jin, Quantitative micro-electrochemical study of duplex stainless steel 2205 in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2053-2063. https://doi.org/10.1007/s12613-021-2291-5 |
Ying Jin E-mail: yjin@ustb.edu.cn
[1] |
J. Verma and R.V. Taiwade, Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review, J. Manuf. Process., 25(2017), p. 134. doi: 10.1016/j.jmapro.2016.11.003
|
[2] |
J.T. Yuan, H.H. Zhang, A.Q. Fu, C.X. Yin, M. Zhu, N.X. Lv, X.Q. Xu, and J. Miao, Insights into the corrosion perforation of UNS S32205 duplex stainless steel weld in gas transportation pipelines, Mater. Corros., 68(2017), No. 8, p. 858. doi: 10.1002/maco.201609341
|
[3] |
S. Pamuk and K. Sojiphan, Effects of argon-nitrogen backing gas ratios on microstructure and corrosion resistance of duplex stainless steel pipe ASTM A790 welds by gas tungsten arc welding process, Mater. Today: Proc., 5(2018), No. 3, p. 9512. doi: 10.1016/j.matpr.2017.10.132
|
[4] |
S.F. Yang, Y. Wen, P. Yi, K. Xiao, and C.F. Dong, Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1260. doi: 10.1007/s12613-017-1518-y
|
[5] |
P. Nithin Raj, P.K. Navaneethkrishnan, K. Sekar, and M.A. Joseph, Comparative study of mechanical, corrosion and erosion-corrosion properties of cast hyper-duplex and super-duplex stainless steels, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 954. doi: 10.1007/s12613-020-1984-5
|
[6] |
C.O.A. Olsson and D. Landolt, Passive films on stainless steels—chemistry, structure and growth, Electrochim. Acta, 48(2003), No. 9, p. 1093. doi: 10.1016/S0013-4686(02)00841-1
|
[7] |
H.H. Strehblow, Passivity of metals studied by surface analytical methods, a review, Electrochim. Acta, 212(2016), p. 630. doi: 10.1016/j.electacta.2016.06.170
|
[8] |
X.Q. Cheng, Y. Wang, C.F. Dong, and X.G. Li, The beneficial galvanic effect of the constituent phases in 2205 duplex stainless steel on the passive films formed in a 3.5% NaCl solution, Corros. Sci., 134(2018), p. 122. doi: 10.1016/j.corsci.2018.02.033
|
[9] |
K.B. Tayyab, A. Farooq, A.A. Alvi, A.B. Nadeem, and K.M. Deen, Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 440. doi: 10.1007/s12613-020-2054-8
|
[10] |
R.A. Perren, T.A. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Böhni, and M.O. Speidel, Corrosion resistance of super duplex stainless steels in chloride ion containing environments: Investigations by means of a new microelectrochemical method: I. Precipitation-free states, Corros. Sci., 43(2001), No. 4, p. 707. doi: 10.1016/S0010-938X(00)00087-1
|
[11] |
M. Femenia, J. Pan, C. Leygraf, and P. Luukkonen, In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunnelling microscopy, Corros. Sci., 43(2001), No. 10, p. 1939. doi: 10.1016/S0010-938X(00)00180-3
|
[12] |
M. Femenia, J. Pan, and C. Leygraf, Characterization of ferrite-austenite boundary region of duplex stainless steels by SAES, J. Electrochem. Soc., 151(2004), No. 11, art. No. B581. doi: 10.1149/1.1796447
|
[13] |
W.T. Tsai and J.R. Chen, Galvanic corrosion between the constituent phases in duplex stainless steel, Corros. Sci., 49(2007), No. 9, p. 3659. doi: 10.1016/j.corsci.2007.03.035
|
[14] |
C.O.A. Olsson, The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS, Corros. Sci., 37(1995), No. 3, p. 467. doi: 10.1016/0010-938X(94)00148-Y
|
[15] |
Y. Jin, Z.G. Lai, P. Bi, S.T. Yan, L. Wen, Y.C. Wang, J.S. Pan, and C. Leygraf, Combining lithography and capillary techniques for local electrochemical property measurements, Electrochem. Commun., 87(2018), p. 53. doi: 10.1016/j.elecom.2017.12.027
|
[16] |
S.Y. Cai, L. Wen, X.Q. Yao, F.F. Huang, Z.G. Yu, and Y. Jin, Coulostatic perturbation measurements and the corresponding time-to-frequency transform data analysis for micro-electrochemical study, J. Electrochem. Soc., 168(2021), No. 2, art. No. 021508. doi: 10.1149/1945-7111/abe0d3
|
[17] |
Z.G. Lai, P. Bi, L. Wen, Y.P. Xue, and Y. Jin, Local electrochemical properties of fusion boundary region in SA508-309L/308L overlay welded joint, Corros. Sci., 155(2019), p. 75. doi: 10.1016/j.corsci.2019.04.021
|
[18] |
D. Nakhaie, A. Davoodi, and A. Imani, The role of constituent phases on corrosion initiation of NiAl bronze in acidic media studied by SEM-EDS, AFM and SKPFM, Corros. Sci., 80(2014), p. 104. doi: 10.1016/j.corsci.2013.11.017
|
[19] |
L. Weber and P.J. Uggowitzer, Partitioning of chromium and molybdenum in super duplex stainless steels with respect to nitrogen and nickel content, Mater. Sci. Eng. A, 242(1998), No. 1-2, p. 222. doi: 10.1016/S0921-5093(97)00521-2
|
[20] |
Y.C. Lu, M.B. Ives, and C.R. Clayton, Synergism of alloying elements and pitting corrosion resistance of stainless steels, Corros. Sci., 35(1993), No. 1-4, p. 89. doi: 10.1016/0010-938X(93)90137-6
|
[21] |
N. Birbilis, B.N. Padgett, and R.G. Buchheit, Limitations in microelectrochemical capillary cell testing and transformation of electrochemical transients for acquisition of microcell impedance data, Electrochim. Acta, 50(2005), No. 16-17, p. 3536. doi: 10.1016/j.electacta.2005.01.010
|
[22] |
S.Y. Cai, L. Wen, and Y. Jin, A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1112. doi: 10.1007/s12613-017-1502-6
|