Jing Han, Cong Wang, Yuanming Song, Zhiyuan Liu, Jiapeng Sun, and Jiyun Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1551-1558. https://doi.org/10.1007/s12613-021-2294-2
Cite this article as:
Jing Han, Cong Wang, Yuanming Song, Zhiyuan Liu, Jiapeng Sun, and Jiyun Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1551-1558. https://doi.org/10.1007/s12613-021-2294-2
Research Article

Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling

+ Author Affiliations
  • Corresponding authors:

    Jing Han    E-mail: hanjing@cumt.edu.cn

    Jiyun Zhao    E-mail: jyzhao@cumt.edu.cn

  • Received: 11 January 2021Revised: 15 March 2021Accepted: 22 April 2021Available online: 23 April 2021
  • Mg alloy casting parts commonly suffer from drawbacks of low surface properties, high susceptibility to corrosion, unsatisfactory absolute strength, and poor ductility, which seriously limit their wide application. Here, a surface nanocrystallization technique, i.e., ultrasonic surface rolling (USR), was applied on an as-cast AZ91 Mg alloy sheet to improve its corrosion resistance and mechanical properties. The USR produces double smooth surfaces with Ra 0.036 μm and gradient nanostructured surface layers on the sheet. Due to this special microstructure modification, the USR sheet exhibits 55% and 50% improvements in yield strength and ultimate tensile strength without visibly sacrificed ductility comparable to its untreated counterpart, as well as a 24% improvement in surface hardness. The USR sheet also shows good corrosion resistance in 3.5wt% NaCl aqueous solution. The corrosion current density of the USR sheet reduces by 63% after immersion for 1 h, and 25% after immersion for 24 h compared to that of the untreated counterpart. The enhanced strength and hardness are mainly related to the gradient nanostructure. The improved corrosion resistance is mainly ascribed to the decreased surface roughness, nanostructured surface, and residual compressive stress. The present results state that USR is an effective and attractive method to improve the multiple properties of Mg alloy casting parts, and thus can be used as an additional and last working procedure to achieve high-performance Mg alloy casting parts.
  • loading
  • [1]
    J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
    [2]
    Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
    [3]
    Y.C. Wang, B.Y. Liu, X.A. Zhao, X.H. Zhang, Y.C. Miao, N. Yang, B. Yang, L.Q. Zhang, W.J. Kuang, J. Li, E. Ma, and Z.W. Shan, Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2, Nat. Commun., 9(2018), art. No. 4058. doi: 10.1038/s41467-018-06433-5
    [4]
    G. Wu, K.C. Chan, L.L. Zhu, L.G. Sun, and J. Lu, Dual-phase nanostructuring as a route to high-strength magnesium alloys, Nature, 545(2017), No. 7652, p. 80. doi: 10.1038/nature21691
    [5]
    G.S. Wu, J.M. Ibrahim, and P.K. Chu, Surface design of biodegradable magnesium alloys—A review, Surf. Coat. Technol., 233(2013), p. 2. doi: 10.1016/j.surfcoat.2012.10.009
    [6]
    J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, and M.L. Zhang, Recent developments in high-strength Mg–RE-based alloys: Focusing on Mg–Gd and Mg–Y systems, J. Magnes. Alloys, 6(2018), No. 3, p. 277. doi: 10.1016/j.jma.2018.08.001
    [7]
    J.P. Sun, Z.Q. Yang, J. Han, H. Liu, D. Song, J.H. Jiang, and A.B. Ma, High strength and ductility AZ91 magnesium alloy with multi-heterogenous microstructures prepared by high-temperature ECAP and short-time aging, Mater. Sci. Eng. A, 734(2018), p. 485. doi: 10.1016/j.msea.2018.07.075
    [8]
    J.P. Sun, B.Q. Xu, Z.Q. Yang, H. Zhou, J. Han, Y.N. Wu, D. Song, Y.C. Yuan, X.R. Zhuo, H. Liu, and A.B. Ma, Achieving excellent ductility in high-strength Mg–10.6Gd–2Ag alloy via equal channel angular pressing, J. Alloys Compd., 817(2020), art. No. 152688. doi: 10.1016/j.jallcom.2019.152688
    [9]
    X. Zhao, F.F. Yan, Z.M. Zhang, P.C. Gao, and S.C. Li, Influence of heat treatment on precipitation behavior and mechanical properties of extruded AZ80 magnesium alloy, Acta Metall. Sin., 34(2021), No. 1, p. 54. doi: 10.1007/s40195-020-01094-0
    [10]
    J.P. Sun, B.Q. Xu, Z.Q. Yang, J. Han, N.N. Liang, Y. Han, J.H. Jiang, A.B. Ma, and G.S. Wu, Mediating the strength, ductility and corrosion resistance of high aluminum containing magnesium alloy by engineering hierarchical precipitates, J. Alloys Compd., 857(2021), art. No. 158277. doi: 10.1016/j.jallcom.2020.158277
    [11]
    K. Lu, Gradient nanostructured materials, Acta Metall. Sin., 51(2015), No. 1, p. 1.
    [12]
    X.H. Chen, J. Lu, L. Lu, and K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scripta Mater., 52(2005), No. 10, p. 1039. doi: 10.1016/j.scriptamat.2005.01.023
    [13]
    S. Bahl, S. Suwas, T. Ungàr, and K. Chatterjee, Elucidating microstructural evolution and strengthening mechanisms in nanocrystalline surface induced by surface mechanical attrition treatment of stainless steel, Acta Mater., 122(2017), p. 138. doi: 10.1016/j.actamat.2016.09.041
    [14]
    S. Benafia, D. Retraint, S. Yapi Brou, B. Panicaud, and J.L. Grosseau Poussard, Influence of surface mechanical attrition treatment on the oxidation behaviour of 316L stainless steel, Corros. Sci., 136(2018), p. 188. doi: 10.1016/j.corsci.2018.03.007
    [15]
    P.F. Wang and Z. Han, Friction and wear behaviors of a gradient nano-grained AISI 316L stainless steel under dry and oil-lubricated conditions, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1835. doi: 10.1016/j.jmst.2018.01.013
    [16]
    C. Wang, J. Han, J.Y. Zhao, Y.M. Song, J.X. Man, H. Zhu, J.P. Sun, and L. Fang, Enhanced wear resistance of 316 L stainless steel with a nanostructured surface layer prepared by ultrasonic surface rolling, Coatings, 9(2019), No. 4, art. No. 276. doi: 10.3390/coatings9040276
    [17]
    T. Wang, D.P. Wang, G. Liu, B.M. Gong, and N.X. Song, Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing, Appl. Surf. Sci., 255(2008), No. 5, p. 1824. doi: 10.1016/j.apsusc.2008.06.034
    [18]
    L. Li, M. Kim, S. Lee, M. Bae, and D. Lee, Influence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel, Surf. Coat. Technol., 307(2016), p. 517. doi: 10.1016/j.surfcoat.2016.09.023
    [19]
    H.B. Wang, G.L. Song, and G.Y. Tang, Enhanced surface properties of austenitic stainless steel by electropulsing-assisted ultrasonic surface rolling process, Surf. Coat. Technol., 282(2015), p. 149. doi: 10.1016/j.surfcoat.2015.10.026
    [20]
    G. Li, S.G. Qu, Y.X. Pan, and X.Q. Li, Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti–6Al–4V alloy, Appl. Surf. Sci., 389(2016), p. 324. doi: 10.1016/j.apsusc.2016.07.120
    [21]
    I. Ghamarian, P. Samimi, A. Telang, V.K. Vasudevan, and P.C. Collins, Characterization of the near-surface nanocrystalline microstructure of ultrasonically treated Ti–6Al–4V using ASTAR™/precession electron diffraction technique, Mater. Sci. Eng. A, 688(2017), p. 524. doi: 10.1016/j.msea.2017.02.029
    [22]
    Y. Liang, H.F. Qin, N. Mehra, J.H. Zhu, Z.N. Yang, G.L. Doll, C. Ye, and Y.L. Dong, Controllable hierarchical micro/nano patterns on biomaterial surfaces fabricated by ultrasonic nanocrystalline surface modification, Mater. Des., 137(2018), p. 325. doi: 10.1016/j.matdes.2017.10.041
    [23]
    Y.D. Ye, X.P. Li, Z.Y. Sun, H.B. Wang, and G.Y. Tang, Enhanced surface mechanical properties and microstructure evolution of commercial pure titanium under electropulsing-assisted ultrasonic surface rolling process, Acta Metall. Sin., 31(2018), No. 12, p. 1272. doi: 10.1007/s40195-018-0738-0
    [24]
    A. Amanov, O.V. Penkov, Y.S. Pyun, and D.E. Kim, Effects of ultrasonic nanocrystalline surface modification on the tribological properties of AZ91D magnesium alloy, Tribol. Int., 54(2012), p. 106. doi: 10.1016/j.triboint.2012.04.024
    [25]
    H. Ye, X. Sun, Y. Liu, X.X. Rao, and Q. Gu, Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy, Surf. Coat. Technol., 372(2019), p. 288. doi: 10.1016/j.surfcoat.2019.05.035
    [26]
    Y.W. Song, D.Y. Shan, R.S. Chen, and E.H. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution, Corros. Sci., 51(2009), No. 5, p. 1087. doi: 10.1016/j.corsci.2009.03.011
    [27]
    G. Song, Recent progress in corrosion and protection of magnesium alloys, Adv. Eng. Mater., 7(2005), No. 7, p. 563. doi: 10.1002/adem.200500013
    [28]
    M. Grimm, A. Lohmüller, R.F. Singer, and S. Virtanen, Influence of the microstructure on the corrosion behaviour of cast Mg–Al alloys, Corros. Sci., 155(2019), p. 195. doi: 10.1016/j.corsci.2019.04.024
    [29]
    Q. Liu, Q.X. Ma, G.Q. Chen, X. Cao, S. Zhang, J.L. Pan, G. Zhang, and Q.Y. Shi, Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing, Corros. Sci., 138(2018), p. 284. doi: 10.1016/j.corsci.2018.04.028
    [30]
    J.R. Li, Q.T. Jiang, H.Y. Sun, and Y.T. Li, Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt.% sodium chloride solution, Corros. Sci., 111(2016), p. 288. doi: 10.1016/j.corsci.2016.05.019
    [31]
    Y. Cubides, A.I. Karayan, D.X. Zhao, L. Nash, K. Xie, and H. Castaneda, New insights on the corrosion mechanism of a peak-aged Mg–9Al–1Zn alloy in a chloride environment, J. Alloys Compd., 840(2020), art. No. 155786. doi: 10.1016/j.jallcom.2020.155786
    [32]
    J.H. Moon, S.M. Baek, S.G. Lee, Y. Seong, A. Amanov, S. Lee, and H.S. Kim, Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification, Mater. Res. Lett., 7(2019), No. 3, p. 97. doi: 10.1080/21663831.2018.1560370
    [33]
    R.X. Zheng, J.P. Du, S. Gao, H. Somekawa, S. Ogata, and N. Tsuji, Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer, Acta Mater., 198(2020), p. 35. doi: 10.1016/j.actamat.2020.07.055
    [34]
    W. Li and D.Y. Li, Influence of surface morphology on corrosion and electronic behavior, Acta Mater., 54(2006), No. 2, p. 445. doi: 10.1016/j.actamat.2005.09.017
    [35]
    D. Orlov, K.D. Ralston, N. Birbilis, and Y. Estrin, Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing, Acta Mater., 59(2011), No. 15, p. 6176. doi: 10.1016/j.actamat.2011.06.033
    [36]
    H. Torbati-Sarraf, S.A. Torbati-Sarraf, A. Poursaee, and T.G. Langdon, Electrochemical behavior of a magnesium ZK60 alloy processed by high-pressure torsion, Corros. Sci., 154(2019), p. 90. doi: 10.1016/j.corsci.2019.04.006
    [37]
    K.Y. Luo, C.Y. Wang, C.Y. Cui, J.Z. Lu, and Y.F. Lu, Effects of coverage layer on the electrochemical corrosion behaviour of Mg–Al–Mn alloy subjected to massive laser shock peening treatment, J. Alloys Compd., 782(2019), p. 1058. doi: 10.1016/j.jallcom.2018.12.224
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(3707) PDF Downloads(87) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return