Yuan Li, Yan-ping Zeng,  and Zhi-chun Wang, Interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints during aging, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1497-1505. https://doi.org/10.1007/s12613-021-2295-1
Cite this article as:
Yuan Li, Yan-ping Zeng,  and Zhi-chun Wang, Interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints during aging, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1497-1505. https://doi.org/10.1007/s12613-021-2295-1
Research Article

Interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints during aging

+ Author Affiliations
  • Corresponding author:

    Yan-ping Zeng    E-mail: zengyanping@mater.ustb.edu.cn

  • Received: 30 January 2021Revised: 27 March 2021Accepted: 21 April 2021Available online: 23 April 2021
  • The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this kind of joints. The results showed that not only a band of granular Cr23C6 carbides were formed along the fusion boundary in the ferritic steel during aging, but also a large number of granular or plate-like Cr23C6 carbides, which have a cube–cube orientation relationship with the matrix, were also precipitated on the weld metal side of the fusion boundary, making this zone be etched more easily than the other zone and become a dark etched band. Stacking faults were found in some Cr23C6 carbides. In the as-welded state, deformation twins were observed in the weld metal with a fully austenitic structure. The peak microhardness was shifted from the ferritic steel side to the weld metal side of the fusion boundary after aging and the peak value increased significantly. Based on the experimental results, a mechanism of premature failures of the joints was proposed.

  • loading
  • [1]
    H.J. Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper-nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1294. doi: 10.1007/s12613-018-1682-8
    [2]
    S.M. Aktarer, D.M. Sekban, T. Kucukomeroglu, and G. Purcek, Microstructure, mechanical properties and formability of friction stir welded dissimilar materials of IF-steel and 6061 Al alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 722. doi: 10.1007/s12613-019-1783-z
    [3]
    D.W. Rathod, S. Pandey, P.K. Singh, and R. Prasad, Mechanical properties variations and comparative analysis of dissimilar metal pipe welds in pressure vessel system of nuclear plants, J. Pressure Vessel. Technol., 138(2016), No. 1, art. No. 011403. doi: 10.1115/1.4031129
    [4]
    A. Taheri, B. Beidokhti, B. Shayegh Boroujeny, and A. Valizadeh, Characterizations of dissimilar S32205/316L welds using austenitic, super-austenitic and super-duplex filler metals, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 119. doi: 10.1007/s12613-019-1925-3
    [5]
    J. Akram, P.R. Kalvala, M. Misra, and I. Charit, Creep behavior of dissimilar metal weld joints between P91 and AISI 304, Mater. Sci. Eng. A, 688(2017), p. 396. doi: 10.1016/j.msea.2017.02.026
    [6]
    R. Mittal and B.S. Sidhu, Microstructures and mechanical properties of dissimilar T91/347H steel weldments, J. Mater. Process. Technol., 220(2015), p. 76. doi: 10.1016/j.jmatprotec.2015.01.008
    [7]
    R.L. Klueh, J.F. King, and J.L. Griffith, Simple test for dissimilar-metal welds, Welding J., 62(1983), No. 6, p. 154.
    [8]
    R.L. Klueh and J.F. King, Austenitic stainless steel–ferritic steel weld joint failures, Welding J., 61(1982), No. 9, p. 302.
    [9]
    R.D. Nicholson, Effect of aging on interfacial structures of nickel-based transition joints, Met. Technol., 11(1984), No. 1, p. 115. doi: 10.1179/030716984803274675
    [10]
    W.K.C. Jones, Heat treatment effect on 2CrMo joints welded with a nickel-base electrode, Welding J., 53(1974), No. 5, p. 225.
    [11]
    M. Sireesha, S.K. Albert, and S. Sundaresan, Influence of high-temperature exposure on the microstructure and mechanical properties of dissimilar metal welds between modified 9Cr–1Mo steel and alloy 800, Metall. Mater. Trans. A, 36(2005), No. 6, p. 1495. doi: 10.1007/s11661-005-0241-x
    [12]
    J.D. Parker and G.C. Stratford, Review of factors affecting condition assessment of nickel based transition joints, Sci. Technol. Weld. Joining, 4(1999), No. 1, p. 29. doi: 10.1179/stw.1999.4.1.29
    [13]
    J.N. DuPont, Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds, Int. Mater. Rev., 57(2012), No. 4, p. 208. doi: 10.1179/1743280412Y.0000000006
    [14]
    K. Laha, K.S. Chandravathi, K.B.S. Rao, S.L. Mannan, and D.H. Sastry, An assessment of creep deformation and fracture behavior of 2.25Cr–1Mo similar and dissimilar weld joints, Metall. Mater. Trans. A, 32(2001), No. 1, p. 115. doi: 10.1007/s11661-001-0107-9
    [15]
    R. Nivas, G. Das, S.K. Das, B. Mahato, S. Kumar, K. Sivaprasad, P.K. Singh, and M. Ghosh, Effect of stress relief annealing on microstructure & mechanical properties of welded joints between low alloy carbon steel and stainless steel, Metall. Mater. Trans. A, 48(2017), No. 1, p. 230. doi: 10.1007/s11661-016-3840-9
    [16]
    G.H. Chen, Q. Zhang, J.J. Liu, J.Q. Wang, X.H. Yu, J. Hua, X.L. Bai, T. Zhang, J.H. Zhang, and W.M. Tang, Microstructures and mechanical properties of T92/Super304H dissimilar steel weld joints after high-temperature ageing, Mater. Des., 44(2013), p. 469. doi: 10.1016/j.matdes.2012.08.022
    [17]
    I. Hajiannia, M. Shamanian, and M. Kasiri, Microstructure and mechanical properties of AISI 347 stainless steel/A335 low alloy steel dissimilar joint produced by gas tungsten arc welding, Mater. Des., 50(2013), p. 566. doi: 10.1016/j.matdes.2013.03.029
    [18]
    Z.R. Chen, Y.H. Lu, X.F. Ding, and T. Shoji, Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal, Mater. Charact., 121(2016), p. 166. doi: 10.1016/j.matchar.2016.09.033
    [19]
    J.D. Parker and G.C. Stratford, Characterisation of microstructures in nickel based transition joints, J. Mater. Sci., 35(2000), No. 16, p. 4099. doi: 10.1023/A:1004846607046
    [20]
    H.L. Ming, R.L. Zhu, Z.M. Zhang, J.Q. Wang, E.H. Han, W. Ke, and M.X. Su, Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW, Mater. Sci. Eng. A, 669(2016), p. 279. doi: 10.1016/j.msea.2016.05.101
    [21]
    G.L.F. Powell and J.V. Bee, Secondary carbide precipitation in an 18wt%Cr–1wt%Mo white iron, J. Mater. Sci., 31(1996), No. 3, p. 707. doi: 10.1007/BF00367889
    [22]
    H.C. Wang, Ex situ and in situ TEM investigations of carbide precipitation in a 10Cr martensitic steel, J. Mater. Sci., 53(2018), No. 10, p. 7845. doi: 10.1007/s10853-018-2075-0
    [23]
    W. Dudzinski, J.P. Morniroli, and M. Gantois, Stacking faults in chromium, iron and vanadium mixed carbides of the type M7C3, J. Mater. Sci., 15(1980), No. 6, p. 1387. doi: 10.1007/BF00752118
    [24]
    S.Q. Ma, J.D. Xing, Y.L. He, Y.F. Li, Z.F. Huang, G.Z. Liu, and Q.J. Geng, Microstructure and crystallography of M7C3 carbide in chromium cast iron, Mater. Chem. Phys., 161(2015), p. 65. doi: 10.1016/j.matchemphys.2015.05.008
    [25]
    S.Q. Ma, J.D. Xing, H.G. Fu, Y.M. Gao, and J.J. Zhang, Microstructure and crystallography of borides and secondary precipitation in 18wt%Cr–4wt%Ni–1 wt%Mo–3.5wt%B–0.27wt%C steel, Acta Mater., 60(2012), No. 3, p. 831. doi: 10.1016/j.actamat.2011.11.004
    [26]
    S.D. Carpenter, D.E.O.S. Carpenter, and J.T.H. Pearce, The nature of stacking faults within iron-chromium carbide of the type (Fe,Cr)7C3, J. Alloys Compd., 494(2010), No. 1-2, p. 245. doi: 10.1016/j.jallcom.2009.12.197
    [27]
    C.X. Pan and B.Q. Chen, Formation of the deformation twinning in austenitic stainless steel weld metal, J. Mater. Sci. Lett., 14(1995), No. 24, p. 1798. doi: 10.1007/BF00271011
    [28]
    S.I. Ford, P.R. Munroe, and D.J. Young, The development of aligned precipitates during internal carbonitridation of Fe–Ni–Cr alloys, Mater. High Temp., 17(2000), No. 2, p. 279. doi: 10.1179/mht.2000.17.2.015
    [29]
    W.H. Jiang, X.D. Yao, H.R. Guan, Z.Q. Hu, and W.H. Jiang, Secondary carbide precipitation in a directionally solified cobalt-base superalloy, Metall. Mater. Trans. A, 30(1999), No. 3, p. 513. doi: 10.1007/s11661-999-0043-7
    [30]
    T.H. Lee and S.J. Kim, Phase identification in an isothermally aged austenitic 22Cr–21Ni–6Mo–N stainless steel, Scripta Mater., 39(1998), No. 7, p. 951. doi: 10.1016/S1359-6462(98)00269-3
    [31]
    C.D. Lundin, Dissimilar metal welds-transition joint literature review, Welding J., 61(1982), No. 2, p. 58.
    [32]
    R. Raj, Nucleation of cavities at second phase particles in grain boundaries, Acta Metall., 26(1978), No. 6, p. 995. doi: 10.1016/0001-6160(78)90050-0
    [33]
    D.C. Dunand, B.Q. Han, and A.M. Jansen, Monkman-grant analysis of creep fracture in dispersion-strengthened and particulate-reinforced aluminum, Metall. Mater. Trans. A, 30(1999), No. 3, p. 829. doi: 10.1007/s11661-999-0076-y
    [34]
    R. Raj, Intergranular fracture in bicrystals, Acta Metall., 26(1978), No. 2, p. 341. doi: 10.1016/0001-6160(78)90133-5
    [35]
    J. Cao, Y. Gong, and Z.G. Yang, Microstructural analysis on creep properties of dissimilar materials joints between T92 martensitic and HR3C austenitic steels, Mater. Sci. Eng. A, 528(2011), No. 19-20, p. 6103. doi: 10.1016/j.msea.2011.04.057
    [36]
    M.E. Kassner and T.A. Hayes, Creep cavitation in metals, Int. J. Plast., 19(2003), No. 10, p. 1715. doi: 10.1016/S0749-6419(02)00111-0
    [37]
    A. Joseph, S.K. Rai, T. Jayakumar, and N. Murugan, Evaluation of residual stresses in dissimilar weld joints, Int. J. Press. Vessels Pip., 82(2005), No. 9, p. 700. doi: 10.1016/j.ijpvp.2005.03.006
    [38]
    W.C. Jiang, Y. Luo, J.H. Li, and W. Woo, Residual stress distribution in a dissimilar weld joint by experimental and simulation study, J. Pressure Vessel. Technol., 139(2017), No. 1, art. No. 011402. doi: 10.1115/1.4033532
    [39]
    J.D. Parker and G.C. Stratford, The high-temperature performance of nickel-based transition joints: II. Fracture behaviour, Mater. Sci. Eng. A, 299(2001), No. 1-2, p. 174. doi: 10.1016/S0921-5093(00)01375-7
    [40]
    D. Qiao, W. Zhang, T.Y. Pan, P. Crooker, S. David, and Z. Feng, Evaluation of residual plastic strain distribution in dissimilar metal weld by hardness mapping, Sci. Technol. Weld. Joining, 18(2013), No. 7, p. 624. doi: 10.1179/1362171813Y.0000000144
    [41]
    C.H. Lee, K.H. Chang, and J.U. Park, Three-dimensional finite element analysis of residual stresses in dissimilar steel pipe welds, Nucl. Eng. Des., 256(2013), p. 160. doi: 10.1016/j.nucengdes.2012.12.016
    [42]
    K.S. Ming, X.F. Bi, and J. Wang, Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures, Int. J. Plast., 113(2019), p. 255. doi: 10.1016/j.ijplas.2018.10.005
    [43]
    J.Y. Zhang, H.W. Zhang, H.F. Ye, and Y.G. Zheng, Twin boundaries merely as intrinsically kinematic barriers for screw dislocation motion in FCC metals, Sci. Rep., 6(2016), art. No. 22893. doi: 10.1038/srep22893
    [44]
    J.J. Zhang, T. Sun, Y.D. Yan, Y.S. He, Y.C. Liang, and S. Dong, Atomistic investigation of probe-based nanomachining on Cu twin boundaries, J. Comput. Theor. Nanosci., 8(2011), No. 11, p. 2344. doi: 10.1166/jctn.2011.1966
    [45]
    W. Wang, T.G. Liu, X.Y. Cao, Y.H. Lu, and T. Shoji, In-situ observation on twin boundary evolution and crack initiation behavior during tensile test on 316L austenitic stainless steel, Mater. Charact., 132(2017), p. 169. doi: 10.1016/j.matchar.2017.08.020
    [46]
    A. Heinz and P. Neumann, Crack initiation during high cycle fatigue of an austenitic steel, Acta Metall. Mater., 38(1990), No. 10, p. 1933. doi: 10.1016/0956-7151(90)90305-Z
    [47]
    C. Blochwitz, R. Richter, W. Tirschler, and K. Obrtlik, The effect of local textures on microcrack propagation in fatigued f.c.c. metals, Mater. Sci. Eng. A, 234-236(1997), p. 563. doi: 10.1016/S0921-5093(97)00320-1
    [48]
    C.C. Chen, J. Liu, and Z.R. Wang, Microstructure stability and evolution in CVD carbonyl Ni materials upon annealing—Grain growth and detwinning process, Mater. Sci. Eng. A, 558(2012), p. 285. doi: 10.1016/j.msea.2012.08.003
    [49]
    T.H. Man, T.W. Liu, D.H. Ping, and T. Ohmura, TEM investigations on lath martensite substructure in quenched Fe–0.2C alloys, Mater. Charact., 135(2018), p. 175. doi: 10.1016/j.matchar.2017.11.039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(869) PDF Downloads(31) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return