Chunmei Yu, Shan Ren, Guangwei Wang, Junjun Xu, Haipeng Teng, Tao Li, Chunchao Huang, and Chuan Wang, Kinetic analysis and modeling of maize straw hydrochar combustion using a multi-Gaussian-distributed activation energy model, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp.464-472. https://dx.doi.org/10.1007/s12613-021-2305-3
Cite this article as: Chunmei Yu, Shan Ren, Guangwei Wang, Junjun Xu, Haipeng Teng, Tao Li, Chunchao Huang, and Chuan Wang, Kinetic analysis and modeling of maize straw hydrochar combustion using a multi-Gaussian-distributed activation energy model, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp.464-472. https://dx.doi.org/10.1007/s12613-021-2305-3

Kinetic analysis and modeling of maize straw hydrochar combustion using a multi-Gaussian-distributed activation energy model

  • Combustion kinetics of the hydrochar was investigated using a multi-Gaussian-distributed activation energy model (DAEM) to expand the knowledge on the combustion mechanisms. The results demonstrated that the kinetic parameters calculated by the multi-Gaussian-DAEM accurately represented the experimental conversion rate curves. Overall, the feedstock combustion could be divided into four stages: the decomposition of hemicellulose, cellulose, lignin, and char combustion. The hydrochar combustion could in turn be divided into three stages: the combustion of cellulose, lignin, and char. The mean activation energy ranges obtained for the cellulose, lignin, and char were 273.7–292.8, 315.1–334.5, and 354.4–370 kJ/mol, respectively, with the standard deviations of 2.1–23.1, 9.5–27.4, and 12.1–22.9 kJ/mol, respectively. The cellulose and lignin contents first increased and then decreased with increasing hydrothermal carbonization (HTC) temperature, while the mass fraction of char gradually increased.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return