Cite this article as: |
Hailong Zhao, Longfei Li, and Qiang Feng, Isothermal oxidation behavior of Nb-bearing austenitic cast steels at 950°C, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 814-824. https://doi.org/10.1007/s12613-021-2314-2 |
Longfei Li E-mail: lilf@skl.ustb.edu.cn
Qiang Feng E-mail: qfeng@skl.ustb.edu.cn
[1] |
P.O. Santacreu, L. Faivre, and A. Acher, Life prediction approach for stainless steel exhaust manifold, SAE Int. J. Passeng. Cars Mech. Syst., 5(2012), No. 2, p. 904. doi: 10.4271/2012-01-0732
|
[2] |
A.Y. Karnik and M.H. Shelby, Effect of exhaust gas temperature limits on the peak power performance of a turbocharged gasoline engine, J. Eng. Gas Turbines Power, 132(2010), No. 11, art. No. 112801. doi: 10.1115/1.4000856
|
[3] |
F. Ohmenhäuser, C. Schwarz, S. Thalmair, and H.S. Evirgen, Constitutive modeling of the thermo-mechanical fatigue and lifetime behavior of the cast steel 1.4849, Mater. Des., 64(2014), p. 631. doi: 10.1016/j.matdes.2014.08.016
|
[4] |
Y. Inoue and M. Kikuchi, Present and future trends of stainless steel for automotive exhaust system, Nippon Steel Tech. Rep., 2003, No. 88, p. 62.
|
[5] |
G.A. Çelik, M.I.T. Tzini, Ş. Polat, Ş.H. Atapek, and G.N. Haidemenopoulos, Thermal and microstructural characterization of a novel ductile cast iron modified by aluminum addition, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 190. doi: 10.1007/s12613-019-1876-8
|
[6] |
J.J. Yan, X.F. Huang, and W.G. Huang, High-temperature oxidation behavior of 9Cr–5Si–3Al ferritic heat-resistant steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1244. doi: 10.1007/s12613-019-1961-z
|
[7] |
K. Matsumoto, M. Tojo, Y. Jinnai, N. Hayashi, and S. Ibaraki, Development of compact and high performance turbocharger for 1050°C exhaust gas, Mitsubishi Heavy Ind. Tech. Rev., 45(2008), No. 3, p. 2.
|
[8] |
H. Singh, B.S. Sidhu, D. Puri, and S. Prakash, Use of plasma spray technology for deposition of high temperature oxidation/corrosion resistant coatings – A review, Mater. Corros., 58(2007), No. 2, p. 92. doi: 10.1002/maco.200603985
|
[9] |
J.M. Francis and J.A. Jutson, The role of silicon in determining the oxidation resistance of an austenitic steel, Mater. Sci. Eng., 4(1969), No. 2-3, p. 84. doi: 10.1016/0025-5416(69)90047-0
|
[10] |
M.J. Bennett, G. Dearnaley, M.R. Houlton, R.W.M. Hawes, P.D. Goode, and M.A. Wilkins, The influence of surface ion implantation upon the oxidation behaviour of a 20% Cr–25% Ni, niobium stabilized austenitic stainless steel, in carbon dioxide, at 825°C, Corros. Sci., 20(1980), No. 1, p. 73. doi: 10.1016/0010-938X(80)90112-2
|
[11] |
R.C. Lobb, J.A. Sasse, and H.E. Evans, Dependence of oxidation behaviour on silicon content of 20%Cr austenitic steels, Mater. Sci. Technol., 5(1989), No. 8, p. 828. doi: 10.1179/mst.1989.5.8.828
|
[12] |
R.K. Wild, High temperature oxidation of austenitic stainless steel in low oxygen pressure, Corros. Sci., 17(1977), No. 2, p. 87. doi: 10.1016/0010-938X(77)90011-7
|
[13] |
S.N. Basu and G.J. Yurek, Effect of alloy grain size and silicon content on the oxidation of austenitic Fe–Cr–Ni–Mn–Si alloys in pure O2, Oxid. Met., 36(1991), No. 3-4, p. 281. doi: 10.1007/BF00662967
|
[14] |
H.E. Evans and A.T. Donaldson, Silicon and chromium depletion during the long-term oxidation of thin-sectioned austenitic steel, Oxid. Met., 50(1998), No. 5-6, p. 457. doi: 10.1023/A:1018808925756
|
[15] |
Y. Behnamian, A. Mostafaei, A. Kohandehghan, B.S. Amirkhiz, D. Serate, Y.F. Sun, S.B. Liu, E. Aghaie, Y.M. Zeng, M. Chmielus, W.Y. Zheng, D. Guzonas, W.X. Chen, and J.L. Luo, A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800°C, Corros. Sci., 106(2016), p. 188. doi: 10.1016/j.corsci.2016.02.004
|
[16] |
Z.B. Zheng, S. Wang, J. Long, J. Wang, and K.H. Zheng, Effect of rare earth elements on high temperature oxidation behaviour of austenitic steel, Corros. Sci., 164(2020), art. No. 108359. doi: 10.1016/j.corsci.2019.108359
|
[17] |
C. Gu, R.Z. Liu, C.D. Wang, Y.F. Sun, and S.J. Zhang, Effect of aluminum on microstructure and high-temperature oxidation resistance of austenitic heat-resistant steel, Metals, 10(2020), No. 2, art. No. 176. doi: 10.3390/met10020176
|
[18] |
T. Okuyama, T. Higashizono, N.H.K. Luan, and M. Kudo, Effect of Nb on thermal-shock resistance of austenitic heat resistant cast steel, Mater. Trans., 61(2020), No. 9, p. 1711. doi: 10.2320/matertrans.MT-M2020121
|
[19] |
F. Tholence and M. Norell, High temperature corrosion of cast alloys in exhaust environments. II—Cast stainless steels, Oxid. Met., 69(2008), No. 1-2, p. 37. doi: 10.1007/s11085-007-9082-x
|
[20] |
N. Xu, D. Monceau, D. Young, and J. Furtado, High temperature corrosion of cast heat resisting steels in CO + CO2 gas mixtures, Corros. Sci., 50(2008), No. 8, p. 2398. doi: 10.1016/j.corsci.2008.06.001
|
[21] |
D. Oquab, N. Xu, D. Monceau, and D.J. Young, Subsurface microstructural changes in a cast heat resisting alloy caused by high temperature corrosion, Corros. Sci., 52(2010), No. 1, p. 255. doi: 10.1016/j.corsci.2009.09.014
|
[22] |
M.P. Brady, G. Muralidharan, D.N. Leonard, J.A. Haynes, R.G. Weldon, and R.D. England, Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800℃ in air with water vapor, Oxid. Met., 82(2014), No. 5-6, p. 359. doi: 10.1007/s11085-014-9496-1
|
[23] |
J.B. Yan, Y.M. Gao, L. Liang, Z.Z. Ye, Y.F. Li, W. Chen, and J.J. Zhang, Effect of yttrium on the cyclic oxidation behaviour of HP40 heat-resistant steel at 1373 K, Corros. Sci., 53(2011), No. 1, p. 329. doi: 10.1016/j.corsci.2010.09.039
|
[24] |
Y.C. Liu, W.F. Wei, L. Benum, M. Oballa, M. Gyorffy, and W.X. Chen, Oxidation behavior of Ni–Cr–Fe-based alloys: Effect of alloy microstructure and silicon content, Oxid. Met., 73(2010), No. 1-2, p. 207. doi: 10.1007/s11085-009-9172-z
|
[25] |
Y.H. Zhang, M. Li, L.A. Godlewski, J.W. Zindel, and Q. Feng, Creep behavior at 1273 K (1000 °C) in Nb-bearing austenitic heat-resistant cast steels developed for exhaust component applications, Metall. Mater. Trans. A, 47(2016), No. 7, p. 3289. doi: 10.1007/s11661-016-3544-1
|
[26] |
H.L. Zhao, C.C. Engler-PintoJr, J. Zindel, L. Godlewski, Y.H. Zhang, Q. Feng, and M. Li, The effect of metal-carbide morphology on the thermomechanical fatigue (TMF) behavior of cast austenitic alloys for exhaust manifolds, Procedia Eng., 133(2015), p. 669. doi: 10.1016/j.proeng.2015.12.648
|
[27] |
H.L. Zhao, C.C. Engler-PintoJr, J.Y. Tong, L.A. Godlewski, J.W. Zindel, L.F. Li, M. Li, and Q. Feng, Mechanical response and dislocation substructure of a cast austenitic steel under low cycle fatigue at elevated temperatures, Mater. Sci. Eng. A, 703(2017), p. 422. doi: 10.1016/j.msea.2017.07.030
|
[28] |
Y.H. Zhang, M. Li, L.A. Godlewski, J.W. Zindel, and Q. Feng, Effects of N/C ratio on solidification behaviors of novel Nb-bearing austenitic heat-resistant cast steels for exhaust components of gasoline engines, Metall. Mater. Trans. A, 48(2017), No. 3, p. 1151. doi: 10.1007/s11661-016-3920-x
|
[29] |
E.A.A.G. Ribeiro, R. Papaléo, and J.R.C. Guimarães, Microstructure and creep behavior of a niobium alloyed cast heat-resistant 26 pct Cr steel, Metall. Trans. A, 17(1986), No. 4, p. 691. doi: 10.1007/BF02643989
|
[30] |
J.P. Shingledecker, P.J. Maziasz, N.D. Evans, and M.J. Pollard, Creep behavior of a new cast austenitic alloy, Int. J. Press. Vessels Pip., 84(2007), No. 1-2, p. 21. doi: 10.1016/j.ijpvp.2006.09.014
|
[31] |
T. Onishi, S. Nakakubo, and M. Takeda, Calculations of internal oxidation rate equations and boundary conditions between internal and external oxidation in silicon containing steels, Mater. Trans., 51(2010), No. 3, p. 482. doi: 10.2320/matertrans.M2009256
|
[32] |
C. Wagner, Reaktionstypen bei der oxydation von legierungen, Z. Elektrochem., 63(1959), No. 7, p. 772.
|
[33] |
H.E. Evans, Modelling oxide spallation, Mater. High Temp., 12(1994), No. 2-3, p. 219. doi: 10.1080/09603409.1994.11689489
|
[34] |
C.C. Lee, C.L. Tien, W.S. Sheu, and C.C. Jaing, An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films, Rev. Sci. Instrum., 72(2001), No. 4, p. 2128. doi: 10.1063/1.1357228
|
[35] |
W. Qu, L. Jian, J.M. Hill, and D.G. Ivey, Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects, J. Power Sources, 153(2006), No. 1, p. 114. doi: 10.1016/j.jpowsour.2005.03.137
|
[36] |
Y. Saito, T. Maruyama, and T. Amano, Adherence of oxide scale formed on Ni–20Cr–1Si alloys with small additions of rare earth elements, Mater. Sci. Eng., 87(1987), p. 275. doi: 10.1016/0025-5416(87)90389-2
|
[37] |
H. Fujikawa, T. Morimoto, Y. Nishiyama, and S.B. Newcomb, The effects of small additions of yttrium on the high-temperature oxidation resistance of a Si-containing austenitic stainless steel, Oxid. Met., 59(2003), No. 1-2, p. 23. doi: 10.1023/A:1023061814413
|
[38] |
A. Paúl, R. Sánchez, O.M. Montes, and J.A. Odriozola, The role of silicon in the reactive-elements effect on the oxidation of conventional austenitic stainless steel, Oxid. Met., 67(2007), No. 1-2, p. 87. doi: 10.1007/s11085-006-9046-6
|
[39] |
E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Johnson, J.K. Olminsky, and M.D. Allendorf, Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g), J. Phys. Chem. A, 111(2007), No. 10, p. 1971. doi: 10.1021/jp0647380
|
[40] |
Y.B. Zhang, X.Y. Hu, C.R. Li, W.W. Xu, and Y.T. Zhao, Composition design, phase transitions of a new polycrystalline Ni–Cr–Co–W base superalloy and its isothermal oxidation dynamics behaviors at 1300°C, Mater. Des., 129(2017), p. 26. doi: 10.1016/j.matdes.2017.05.028
|