Cite this article as: |
Meng-ting Duan, Meng-rong Wu, Kai Xue, Zheng-xu Bian, Jing Shi, Xing-mei Guo, Fu Cao, Jun-hao Zhang, Qing-hong Kong, and Feng Zhang, Preparation of CoO/SnO2@NC/S composite as high-stability cathode material for lithium-sulfur batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1647-1655. https://doi.org/10.1007/s12613-021-2315-1 |
Xing-mei Guo E-mail: guoxm@just.edu.cn
Jun-hao Zhang E-mail: jhzhang6@just.edu.cn
To improve the sulfur loading capacity of lithium-sulfur batteries (Li–S batteries) cathode and avoid the inevitable “shuttle effect”, hollow N doped carbon coated CoO/SnO2 (CoO/SnO2@NC) composite has been designed and prepared by a hydrothermal-calcination method. The specific surface area of CoO/SnO2@NC composite is 85.464 m2·g–1, and the pore volume is 0.1189 cm3·g–1. The hollow core-shell structure as a carrier has a sulfur loading amount of 66.10%. The initial specific capacity of the assembled Li–S batteries is 395.7 mAh·g–1 at 0.2 C, which maintains 302.7 mAh·g–1 after 400 cycles. When the rate increases to 2.5 C, the specific capacity still has 221.2 mAh·g–1. The excellent lithium storage performance is attributed to the core-shell structure with high specific surface area and porosity. This structure effectively increases the sulfur loading, enhances the chemical adsorption of lithium polysulfides, and reduces direct contact between CoO/SnO2 and the electrolyte.
[1] |
Y.T. Dong, Y.H. Ma, D. Li, Y.S. Liu, W.H. Chen, X.M. Feng, and J.M. Zhang, Construction of 3D architectures with Ni(HCO3)2 nanocubes wrapped by reduced graphene oxide for LIBs: Ultrahigh capacity, ultrafast rate capability and ultralong cycle stability, Chem. Sci., 9(2018), No. 46, p. 8682. doi: 10.1039/C8SC02868K
|
[2] |
Y.Y. Zhang, C.P. Wang, Y.T. Dong, R.P. Wei, and J.M. Zhang, Understanding the high-performance anode material of CoC2O4·2H2O microrods wrapped by reduced graphene oxide for lithium-ion and sodium-ion batteries, Chem. Eur. J., 27(2021), No. 3, p. 993. doi: 10.1002/chem.202003309
|
[3] |
M.Y. Gao, Z.H. Tang, M.R. Wu, J.L. Chen, Y.C. Xue, X.M. Guo, Y.J. Liu, Q.H. Kong, and J.H. Zhang, Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries, J. Alloys Compd., 857(2021), art. No. 157554. doi: 10.1016/j.jallcom.2020.157554
|
[4] |
J.H. Zhang, M. Huang, B.J. Xi, K. Mi, A.H. Yuan, and S.L. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries, Adv. Energy Mater., 8(2018), No. 2, art. No. 1701330. doi: 10.1002/aenm.201701330
|
[5] |
H.X. Li, S. Ma, J.W. Li, F.Y. Liu, H.H. Zhou, Z.Y. Huang, S.Q. Jiao, and Y.F. Kuang, Altering the reaction mechanism to eliminate the shuttle effect in lithium-sulfur batteries, Energy Storage Mater., 26(2020), p. 203. doi: 10.1016/j.ensm.2020.01.002
|
[6] |
M.A. Al-Tahan, Y.T. Dong, R. Zhang, Y.Y. Zhang, and J.M. Zhang, Understanding the high-performance Fe(OH)3@GO nanoarchitecture as effective sulfur hosts for the high capacity of lithium-sulfur batteries, Appl. Surf. Sci., 538(2021), art. No. 148032. doi: 10.1016/j.apsusc.2020.148032
|
[7] |
R.Z.A. Manj, X.Q. Chen, W.U. Rehman, G.J. Zhu, W. Luo, and J.P. Yang, Big potential from silicon-based porous nanomaterials: In field of energy storage and sensors, Front. Chem., 6(2018), p. 539.
|
[8] |
X.M. Guo, C. Qian, X.H. Wan, W. Zhang, H.W. Zhu, J.H. Zhang, H.X. Yang, S.L. Lin, Q.H. Kong, and T.X. Fan, Facile in situ fabrication of biomorphic Co2P-Co3O4/rGO/C as an efficient electrocatalyst for the oxygen reduction reaction, Nanoscale, 12(2020), No. 7, p. 4374. doi: 10.1039/C9NR10785A
|
[9] |
D. Zhang, X.M. Guo, X.Z. Tong, Y.F. Chen, M.T. Duan, J. Shi, C.W. Jiang, L.L. Hu, Q.H. Kong, and J.H. Zhang, High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni-Co layered double hydroxide, J. Alloys Compd., 837(2020), art. No. 155529. doi: 10.1016/j.jallcom.2020.155529
|
[10] |
X.M. Guo, C. Qian, R.H. Shi, W. Zhang, F. Xu, S.L. Qian, J.H. Zhang, H.X. Yang, A.H. Yuan, and T.X. Fan, Biomorphic Co–N–C/CoOx composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction, Small, 15(2019), No. 8, art. No. 1804855. doi: 10.1002/smll.201804855
|
[11] |
M. Jana, R. Xu, X.B. Cheng, J.S. Yeon, J.M. Park, J.Q. Huang, Q. Zhang, and H.S. Park, Rational design of two-dimensional nanomaterials for lithium–sulfur batteries, Energy Environ. Sci., 13(2020), No. 4, p. 1049. doi: 10.1039/C9EE02049G
|
[12] |
J. Zhang, P. Gu, J. Xu, H.G. Xue, and H. Pang, High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries, Nanoscale, 8(2016), No. 44, p. 18578. doi: 10.1039/C6NR07207K
|
[13] |
Z. Zhang, S. Basu, P.P. Zhu, H. Zhang, A. Shao, N. Koratkar, and Z.Y. Yang, Highly sulfiphilic Ni-Fe bimetallic oxide nanoparticles anchored on carbon nanotubes enable effective immobilization and conversion of polysulfides for stable lithium-sulfur batteries, Carbon, 142(2019), p. 32. doi: 10.1016/j.carbon.2018.10.035
|
[14] |
X. Liang and L.F. Nazar, In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes, ACS Nano, 10(2016), No. 4, p. 4192. doi: 10.1021/acsnano.5b07458
|
[15] |
L.L. Lin, F. Pei, J. Peng, A. Fu, J.Q. Cui, X.L. Fang, and N.F. Zheng, Fiber network composed of interconnected yolk-shell carbon nanospheres for high-performance lithium-sulfur batteries, Nano Energy, 54(2018), p. 50. doi: 10.1016/j.nanoen.2018.10.001
|
[16] |
Z.Y. Lyu, D. Xu, L.J. Yang, R.C. Che, R. Feng, J. Zhao, Y. Li, Q. Wu, X.Z. Wang, and Z. Hu, Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries, Nano Energy, 12(2015), p. 657. doi: 10.1016/j.nanoen.2015.01.033
|
[17] |
R. Elakkiya and G. Maduraiveeran, Two-dimensional earth-abundant transition metal oxides nanomaterials: Synthesis and application in electrochemical oxygen evolution reaction, Langmuir, 36(2020), No. 17, p. 4728. doi: 10.1021/acs.langmuir.0c00714
|
[18] |
L. Kong, H.J. Peng, J.Q. Huang, and Q. Zhang, Review of nanostructured current collectors in lithium-sulfur batteries, Nano Res., 10(2017), No. 12, p. 4027. doi: 10.1007/s12274-017-1652-x
|
[19] |
Z.Q. Ye, Y. Jiang, L. Li, F. Wu, and R.J. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries, Adv. Mater., 32(2020), No. 32, art. No. 2002168. doi: 10.1002/adma.202002168
|
[20] |
Y.Y. He, L.Q. Xu, C.C. Li, X.X. Chen, G. Xu, and X.Y. Jiao, Mesoporous Mn-Sn bimetallic oxide nanocubes as long cycle life anodes for Li-ion half/full cells and sulfur hosts for Li–S batteries, Nano Res., 11(2018), No. 7, p. 3555. doi: 10.1007/s12274-017-1921-8
|
[21] |
G.L. Cui, G.R. Li, D. Luo, Y.G. Zhang, Y. Zhao, D.R. Wang, J.Y. Wang, Z. Zhang, X. Wang, and Z.W. Chen, Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries, Nano Energy, 72(2020), art. No. 104685. doi: 10.1016/j.nanoen.2020.104685
|
[22] |
J. Park, S.H. Yu, and Y.E. Sung, Design of structural and functional nanomaterials for lithium-sulfur batteries, Nano Today, 18(2018), p. 35. doi: 10.1016/j.nantod.2017.12.010
|
[23] |
L.Q. Lu, F. Pei, T. Abeln, and Y.T. Pei, Tailoring three-dimensional interconnected nanoporous graphene micro/nano-foams for lithium-sulfur batteries, Carbon, 157(2020), p. 437. doi: 10.1016/j.carbon.2019.10.072
|
[24] |
X.S. Lv, W. Wei, H.C. Yang, J.J. Li, B.B. Huang, and Y. Dai, Group IV monochalcogenides MX (M=Ge, Sn; X=S, Se) as chemical anchors of polysulfides for lithium-sulfur batteries, Chem. Eur. J., 24(2018), No. 43, p. 11193. doi: 10.1002/chem.201801925
|
[25] |
J.L. Chen, Z.X. Bian, M.R. Wu, M.Y. Gao, J. Shi, M.T. Duan, X.M. Guo, Y.J. Liu, J.H. Zhang, and Q.H. Kong, Preparation of CoSnO3/CNTs/S and its electrochemical performance as cathode material for lithium-sulfur batteries, ChemElectroChem, 7(2020), No. 20, p. 4209. doi: 10.1002/celc.202001081
|
[26] |
Z.S. Qiao, F. Zhou, Q.F. Zhang, F. Pei, H.F. Zheng, W.J. Xu, P.F. Liu, Y.T. Ma, Q.S. Xie, L.S. Wang, X.L. Fang, and D.L. Peng, Chemisorption and electrocatalytic effect from CoxSny alloy for high performance lithium sulfur batteries, Energy Storage Mater., 23(2019), p. 62. doi: 10.1016/j.ensm.2019.05.032
|
[27] |
H. Li, B. Zhang, Q.J. Zhou, J. Zhang, W.J. Yu, Z.Y. Ding, M.A. Tsiamtsouri, J.C. Zheng, and H. Tong, Dual-carbon confined SnO2 as ultralong-life anode for Li-ion batteries, Ceram. Int., 45(2019), No. 6, p. 7830. doi: 10.1016/j.ceramint.2019.01.090
|
[28] |
M.X. Wang, L.S. Fan, X. Wu, Y. Qiu, Y. Wang, N.Q. Zhang, and K.N. Sun, SnS2/SnO2 heterostructures towards enhanced electrochemical performance of lithium-sulfur batteries, Chem. Eur. J., 25(2019), No. 21, p. 5416. doi: 10.1002/chem.201806231
|
[29] |
Z.H. Song, X. Qin, N. Cao, X.J. Gao, Q. Liang, and Y.F. Huo, Mesoporous CoO/reduced graphene oxide as bi-functional catalyst for Li–O2 battery with improved performances, Mater. Chem. Phys., 203(2018), p. 302. doi: 10.1016/j.matchemphys.2017.10.017
|
[30] |
M.F. Jiang, Z.Q. Zhang, B. Tang, T.T. Dong, H.T. Xu, H.R. Zhang, X.L. Lu, and G.L. Cui, Polymer electrolytes for Li–S batteries: Polymeric fundamentals and performance optimization, J. Energy Chem., 58(2021), p. 300. doi: 10.1016/j.jechem.2020.10.009
|
[31] |
Q.H. Kong, Y.L. Sun, C.J. Zhang, H.M. Guan, J.H. Zhang, D.Y. Wang, and F. Zhang, Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy, Compos. Sci. Technol., 182(2019), art. No. 107748. doi: 10.1016/j.compscitech.2019.107748
|
[32] |
H. Köse, B.Ş. Kurt, Ş. Dombaycıoğlu, and A.O. Aydın, Rational design of cathode structure based on free-standing S/rGO/CNT nanocomposite for Li–S batteries, Synth. Met., 267(2020), art. No. 116471. doi: 10.1016/j.synthmet.2020.116471
|
[33] |
Y. Li, J.D. Zhu, R.W. Shi, M. Dirican, P. Zhu, C.Y. Yan, H. Jia, J. Zang, J.H. He, and X.W. Zhang, Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan, Chem. Eng. J., 349(2018), p. 376. doi: 10.1016/j.cej.2018.05.074
|
[34] |
Y.Z. Wang, D. Adekoya, J.Q. Sun, T.Y. Tang, H.L. Qiu, L. Xu, S.Q. Zhang, and Y.L. Hou, Manipulation of edge-site Fe-N2 moiety on holey Fe, N codoped graphene to promote the cycle stability and rate capacity of Li–S batteries, Adv. Funct. Mater., 29(2019), No. 5, art. No. 1807485. doi: 10.1002/adfm.201807485
|
[35] |
J. Qian, F.J. Wang, Y. Li, S. Wang, Y.Y. Zhao, W.L. Li, Y. Xing, L. Deng, Q. Sun, L. Li, F. Wu, and R.J. Chen, Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions, Adv. Funct. Mater., 30(2020), No. 27, art. No. 2000742. doi: 10.1002/adfm.202000742
|
[36] |
J.Y. Wu, N. You, X.W. Li, H.X. Zeng, S. Li, Z.G. Xue, Y.S. Ye, and X.L. Xie, SiO2@MoS2 core-shell nanocomposite layers with high lithium ion diffusion as a triple polysulfide shield for high performance lithium-sulfur batteries, J. Mater. Chem. A, 7(2019), No. 13, p. 7644. doi: 10.1039/C9TA00982E
|
[37] |
C. Deng, Z.W. Wang, S.P. Wang, and J.X. Yu, Inhibition of polysulfide diffusion in lithium-sulfur batteries: Mechanism and improvement strategies, J. Mater. Chem. A, 7(2019), No. 20, p. 12381. doi: 10.1039/C9TA00535H
|
[38] |
M. Zhao, H.J. Peng, Z.W. Zhang, B.Q. Li, X. Chen, J. Xie, X. Chen, J.Y. Wei, Q. Zhang, and J.Q. Huang, Inside cover: Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal, Angew. Chem. Int. Ed., 58(2019), No. 12, p. 3654. doi: 10.1002/anie.201900312
|
[39] |
G. Li, X.L. Wang, M.H. Seo, M. Li, L. Ma, Y.F. Yuan, T.P. Wu, A.P. Yu, S. Wang, J. Lu, and Z.W. Chen, Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries, Nat. Commun., 9(2018), art. No. 705. doi: 10.1038/s41467-018-03116-z
|
[40] |
Z.B. Xiao, Z. Yang, Z.L. Li, P.Y. Li, and R.H. Wang, Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix, ACS Nano, 13(2019), No. 3, p. 3404. doi: 10.1021/acsnano.8b09296
|
[41] |
D.Q. Su, M. Huang, J.H. Zhang, X.M. Guo, J.L. Chen, Y.C. Xue, A.H. Yuan, and Q.H. Kong, High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage, Nano Res., 13(2020), No. 10, p. 2862. doi: 10.1007/s12274-020-2944-0
|
[42] |
M. Rana, M. Li, X. Huang, B. Luo, I. Gentle, and R. Knibbe, Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries, J. Mater. Chem. A, 7(2019), No. 12, p. 6596. doi: 10.1039/C8TA12066H
|
[43] |
M. Huang, K. Mi, J.H. Zhang, H.L. Liu, T.T. Yu, A.H. Yuan, Q.H. Kong, and S.L. Xiong, MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage, J. Mater. Chem. A, 5(2017), No. 1, p. 266. doi: 10.1039/C6TA09030C
|
[44] |
R. Zhang, Y.T. Dong, M.A. Al-Tahan, Y.Y. Zhang, R.P. Wei, Y.H. Ma, C.C. Yang, and J.M. Zhang, Insights into the sandwich-like ultrathin Ni-doped MoS2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium-sulfur batteries, J. Energy Chem., 60(2021), p. 85. doi: 10.1016/j.jechem.2021.01.004
|
[45] |
Y.C. Xue, M.Y. Gao, M.R. Wu, D.Q. Su, X.M. Guo, J. Shi, M.T. Duan, J.L. Chen, J.H. Zhang, and Q.H. Kong, A promising hard carbon-soft carbon composite anode with boosting sodium storage performance, ChemElectroChem, 7(2020), No. 19, p. 4010. doi: 10.1002/celc.202000932
|