Cite this article as: |
Han-zhong Deng, Lei Wang, Yang Liu, Xiu Song, Fan-qiang Meng, and Shuo Huang, Evolution behavior of γ″ phase of IN718 superalloy in temperature/stress coupled field, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 1949-1956. https://doi.org/10.1007/s12613-021-2317-z |
Lei Wang E-mail: wanglei@mail.neu.edu.cn
Fan-qiang Meng E-mail: mengfq5@mail.sysu.edu.cn
The evolution behavior of the γ″ phase of IN718 superalloy in a temperature/stress coupled field was investigated. Results showed that the coarsening rate of the γ″ phase was significantly accelerated in the temperature/stress coupled field. Based on the detail microstructural and crystal defect analysis, it was found that the coarsening rate of the γ″ phase with applied stress was significantly higher than that without stress. The main reasons for the increase in the coarsening rate of the γ″ phase are as follows: the vacancy formation energy is decreased by the applied stress, which leads to an increase in the vacancy concentration; in the temperature/stress coupled field, the Nb atoms easily combine with vacancies to form complexes and diffuse with the complexes, resulting in a significant increase in the Nb atom diffusion coefficient; Nb atom diffusion is the key control factor for the coarsening of the γ″ phase.
[1] |
Y.C. Wang, L.M. Lei, L. Shi, H.Y. Wan, F. Liang, and G.P. Zhang, Scanning strategy dependent tensile properties of selective laser melted GH4169, Mater. Sci. Eng. A, 788(2020), art. No. 139616. doi: 10.1016/j.msea.2020.139616
|
[2] |
P.H. Geng, G.L. Qin, J. Zhou, T.Y. Li, and N.S. Ma, Characterization of microstructures and hot-compressive behavior of GH4169 superalloy by kinetics analysis and simulation, J. Mater. Process. Technol., 288(2021), art. No. 116879. doi: 10.1016/j.jmatprotec.2020.116879
|
[3] |
J.Y. Zhang, B. Xu, N.U.H. Tariq, M.Y. Sun, D.Z. Li, and Y.Y. Li, Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys, J. Mater. Sci. Technol., 40(2020), p. 54. doi: 10.1016/j.jmst.2019.08.044
|
[4] |
A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J.Y. Guédou, J.F. Uginet, and P. Héritier, Gamma double prime precipitation kinetic in Alloy 718, Mater. Sci. Eng. A, 486(2008), No. 1-2, p. 117. doi: 10.1016/j.msea.2007.08.046
|
[5] |
Z. Qiao, C. Li, H.J. Zhang, H.Y. Liang, Y.C. Liu, and Y. Zhang, Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1123. doi: 10.1007/s12613-019-1949-8
|
[6] |
J.L. Zhang, Q.Y. Guo, Y.C. Liu, C. Li, L.M. Yu, and H.J. Li, Effect of cold rolling and first precipitates on the coarsening behavior of γ″-phases in Inconel 718 alloy, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1087. doi: 10.1007/s12613-016-1326-9
|
[7] |
Y.F. Han, P. Deb, and M.C. Chaturvedi, Coarsening behaviour of γ″- and γʹ-particles in Inconel alloy 718, Met. Sci., 16(1982), No. 12, p. 555. doi: 10.1179/030634582790427118
|
[8] |
M.C. Chaturvedi and Y. Han, Effect of particle size on the creep rate of superalloy Inconel 718, Mater. Sci. Eng., 89(1987), p. L7. doi: 10.1016/0025-5416(87)90264-3
|
[9] |
Y.F. Han and M.C. Chaturvedi, A study of back stress during creep deformation of a superalloy inconel 718, Mater. Sci. Eng., 85(1987), p. 59. doi: 10.1016/0025-5416(87)90467-8
|
[10] |
L. Wang, Y. Wang, Y. Liu, X. Song, X.D. Lü, and B.J. Zhang, Coarsening behavior of γʹ and γ″ phases in GH4169 superalloy by electric field treatment, Int. J. Miner. Metall. Mater., 20(2013), No. 9, p. 861. doi: 10.1007/s12613-013-0807-3
|
[11] |
H.Y. Li, Y.H. Kong, G.S. Chen, L.X. Xie, S.G. Zhu, and X. Sheng, Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy, Mater. Sci. Eng. A, 582(2013), p. 368. doi: 10.1016/j.msea.2013.06.021
|
[12] |
C.M. Kuo, Y.T. Yang, H.Y. Bor, C.N. Wei, and C.C. Tai, Aging effects on the microstructure and creep behavior of Inconel 718 superalloy, Mater. Sci. Eng. A, 510-511(2009), p. 289. doi: 10.1016/j.msea.2008.04.097
|
[13] |
W. Chen and M.C. Chaturvedi, Grain boundary dependent creep behaviour of Inconel 718, Can. Metall. Q., 32(1993), No. 4, p. 363. doi: 10.1179/cmq.1993.32.4.363
|
[14] |
A.C. Yeh, K.W. Lu, C.M. Kuo, H.Y. Bor, and C.N. Wei, Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy, Mater. Sci. Eng. A, 530(2011), p. 525. doi: 10.1016/j.msea.2011.10.014
|
[15] |
X.T. Hu, W.M. Ye, L.C. Zhang, R. Jiang, and Y.D. Song, Investigation on creep properties and microstructure evolution of GH4169 alloy at different temperatures and stresses, Mater. Sci. Eng. A, 800(2021), art. No. 140338. doi: 10.1016/j.msea.2020.140338
|
[16] |
M. Gao, D.G. Harlow, R.P. Wei, and S.C. Chen, Preferential coarsening of γ″ precipitates in INCONEL 718 during creep, Metall. Mater. Trans. A, 27(1996), No. 11, p. 3391. doi: 10.1007/BF02595432
|
[17] |
H.B. Long, S.R. Bakhtiari, Y.N. Liu, S.C. Mao, H. Wei, Y.H. Chen, A. Li, D.L. Kong, L. Yan, L.Y. Yang, Z. Zhang, and X.D. Han, A comparative study of rafting mechanisms of Ni-based single crystal superalloys, Mater. Des., 196(2020), art. No. 109097. doi: 10.1016/j.matdes.2020.109097
|
[18] |
D.Q. Qi, L. Wang, P. Zhao, L. Qi, S.Y. He, Y. Qi, H.Q. Ye, J. Zhang, and K. Du, Facilitating effect of interfacial grooves on the rafting of nickel-based single crystal superalloy at high temperature, Scr. Mater., 167(2019), p. 71. doi: 10.1016/j.scriptamat.2019.04.001
|
[19] |
Y.C. Yu, Y. Ru, Y. Shang, Y.L. Pei, S.S. Li, and S.K. Gong, Effect of applied stress on γʹ-rafting behavior in a Ni-based single-crystal superalloy: Experiments and finite element analysis, J. Iron Steel Res. Int., 26(2019), No. 3, p. 259. doi: 10.1007/s42243-018-0076-5
|
[20] |
M.A. Ali, J.V. Görler, and I. Steinbach, Role of coherency loss on rafting behavior of Ni-based superalloys, Comput. Mater. Sci., 171(2020), art. No. 109279. doi: 10.1016/j.commatsci.2019.109279
|
[21] |
J.L. An, L. Wang, X. Song, and Y. Liu, New approach for plastic deformation behavior of GH4169 superalloy with in situ electric-pulse current at 800°C, Mater. Sci. Eng. A, 707(2017), p. 356. doi: 10.1016/j.msea.2017.09.021
|
[22] |
Y.C. Lin, H. Yang, Y.C. Xin, and C.Z. Li, Effects of initial microstructures on serrated flow features and fracture mechanisms of a nickel-based superalloy, Mater. Charact., 144(2018), p. 9. doi: 10.1016/j.matchar.2018.06.029
|
[23] |
Y.C. Lin, H. Yang, D.G. He, and J. Chen, A physically-based model considering dislocation-solute atom dynamic interactions for a nickel-based superalloy at intermediate temperatures, Mater. Des., 183(2019), art. No. 108122. doi: 10.1016/j.matdes.2019.108122
|
[24] |
Y.C. Lin, H. Yang, and L. Li, Effects of solutionizing cooling processing on γ″ (Ni3Nb) phase and work hardening characteristics of a Ni–Fe–Cr-base superalloy, Vacuum, 144(2017), p. 86. doi: 10.1016/j.vacuum.2017.07.025
|
[25] |
K. Chen, S.Y. Rui, F. Wang, J.X. Dong, and Z.H. Yao, Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 889. doi: 10.1007/s12613-019-1802-0
|
[26] |
A. Janotti, M. Krčmar, C.L. Fu, and R.C. Reed, Solute diffusion in metals: Larger atoms can move faster, Phys. Rev. Lett., 92(2004), No. 8, art. No. 085901. doi: 10.1103/PhysRevLett.92.085901
|
[27] |
C.L. Fu, R. Reed, A. Janotti, and M. Krcmar, On the diffusion of alloying elements in the nickel-base superalloys, [in] Proceedings of the International Symposium on Superalloys, Champion, PA, 2004, p. 867.
|
[28] |
I.L. Lomaev, D.L. Novikov, S.V. Okatov, Y.N. Gornostyrev, and S.F. Burlatsky, First-principles study of 4d solute diffusion in nickel, J. Mater. Sci., 49(2014), No. 11, p. 4038. doi: 10.1007/s10853-014-8119-1
|
[29] |
H. Okazawa, T. Yoshiie, T. Ishizai, K. Sato, Q. Xu, Y. Satoh, Y. Ohkubo, and Y. Kawase, Detection of interstitial clusters in neutron irradiated Ni–Hf alloy by perturbed angular correlation and positron annihilation lifetime measurements, J. Nucl. Mater., 329-333(2004), p. 967. doi: 10.1016/j.jnucmat.2004.04.065
|
[30] |
H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, and M. Kiritani, Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe, Mater. Sci. Eng. A, 350(2003), No. 1-2, p. 95. doi: 10.1016/S0921-5093(02)00705-0
|
[31] |
E. Kuramoto, T. Tsutsumi, K. Ueno, M. Ohmura, and Y. Kamimura, Positron lifetime calculations on vacancy clusters and dislocations in Ni and Fe, Comput. Mater. Sci., 14(1999), No. 1-4, p. 28. doi: 10.1016/S0927-0256(98)00068-8
|
[32] |
E. Kuramoto, H. Abe, M. Takenaka, F. Hori, Y. Kamimura, M. Kimura, and K. Ueno, Positron annihilation lifetime study of irradiated and deformed Fe and Ni, J. Nucl. Mater., 239(1996), p. 54. doi: 10.1016/S0022-3115(96)00432-1
|
[33] |
W. Brandt and R. Paulin, Positron diffusion in solids, Phys. Rev. B, 5(1972), No. 7, p. 2430. doi: 10.1103/PhysRevB.5.2430
|
[34] |
W. Frank and A. Seeger, Theoretical foundation and extension of the trapping model, Appl. Phys., 3(1974), No. 1, p. 61. doi: 10.1007/BF00892335
|
[35] |
S. Ghosh and P. Suryanarayana, Electronic structure study regarding the influence of macroscopic deformations on the vacancy formation energy in aluminum, Mech. Res. Commun., 99(2019), p. 58. doi: 10.1016/j.mechrescom.2019.06.007
|
[36] |
Y.H. Gao, L.F. Cao, J. Kuang, J.Y. Zhang, G. Liu, and J. Sun, Dual effect of Cu on the Al3Sc nanoprecipitate coarsening, J. Mater. Sci. Technol., 37(2020), p. 38. doi: 10.1016/j.jmst.2019.07.035
|
[37] |
A. Biswas, D.J. Siegel, and D.N. Seidman, Simultaneous segregation at coherent and semicoherent heterophase interfaces, Phys. Rev. Lett., 105(2010), No. 7, art. No. 076102. doi: 10.1103/PhysRevLett.105.076102
|
[38] |
T.D. Xu and B.Y. Cheng, Kinetics of non-equilibrium grain-boundary segregation, Prog. Mater. Sci., 49(2004), No. 2, p. 109. doi: 10.1016/S0079-6425(03)00019-7
|
[39] |
R.G. Faulkner, Non-equilibrium grain-boundary segregation in austenitic alloys, J. Mater. Sci., 16(1981), No. 2, p. 373. doi: 10.1007/BF00738626
|
[40] |
S.H. Song and L.Q. Weng, Diffusion of vacancy-solute complexes in alloys, Mater. Sci. Technol., 21(2005), No. 3, p. 305. doi: 10.1179/174328405X27025
|