Ruiqing Lu, Long Zhang, Shuwei Zheng, Dingfa Fu, Jie Teng, Jianchun Chen, Guodong Zhao, Fulin Jiang,  and Hui Zhang, Microstructure, mechanical properties and deformation mechanisms of an Al–Mg alloy processed by the cyclical continuous expanded extrusion and drawing approach, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 108-118. https://doi.org/10.1007/s12613-021-2342-y
Cite this article as:
Ruiqing Lu, Long Zhang, Shuwei Zheng, Dingfa Fu, Jie Teng, Jianchun Chen, Guodong Zhao, Fulin Jiang,  and Hui Zhang, Microstructure, mechanical properties and deformation mechanisms of an Al–Mg alloy processed by the cyclical continuous expanded extrusion and drawing approach, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 108-118. https://doi.org/10.1007/s12613-021-2342-y
Research Article

Microstructure, mechanical properties and deformation mechanisms of an Al–Mg alloy processed by the cyclical continuous expanded extrusion and drawing approach

+ Author Affiliations
  • Corresponding authors:

    Dingfa Fu    E-mail: hunu_fudingfa@163.com

    Jie Teng    E-mail: tengjie@hnu.edu.cn

  • Received: 17 July 2021Revised: 9 August 2021Accepted: 17 August 2021Available online: 18 August 2021
  • Al–Mg alloys are an important class of non-heat treatable alloys in which Mg solute and grain size play essential role in their mechanical properties and plastic deformation behaviors. In this work, a cyclical continuous expanded extrusion and drawing (CCEED) process was proposed and implemented on an Al–3Mg alloy to introduce large plastic deformation. The results showed that the continuous expanded extrusion mainly improved the ductility, while the cold drawing enhanced the strength of the alloy. With the increased processing CCEED passes, the multi-pass cross shear deformation mechanism progressively improved the homogeneity of the hardness distributions and refined grain size. Continuous dynamic recrystallization played an important role in the grain refinement of the processed Al–3Mg alloy rods. Besides, the microstructural evolution was basically influenced by the special thermomechanical deformation conditions during the CCEED process.

  • loading
  • [1]
    H.J. McQueen, S. Spigarelli, M.E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, Boca Raton, 2011.
    [2]
    Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater., 61(2013), No. 3, p. 782. doi: 10.1016/j.actamat.2012.10.038
    [3]
    M. Kuzmina, D. Ponge, and D. Raabe, Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel, Acta Mater., 86(2015), p. 182. doi: 10.1016/j.actamat.2014.12.021
    [4]
    C.Q. Huang, J.X. Liu, and X.D. Jia, Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1140. doi: 10.1007/s12613-019-1852-3
    [5]
    R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Mater. Sci. Eng. A, 168(1993), No. 2, p. 141. doi: 10.1016/0921-5093(93)90717-S
    [6]
    I. Sabirov, N.A. Enikeev, M.Y. Murashkin, and R.Z. Valiev, Bulk Nanostructured Materials with Multifunctional Properties, Springer, Cham, 2015.
    [7]
    G. Faraji, H.S. Kim, and H.T. Kashi, Severe Plastic Deformation Methods: Processing and Properties, Elsevier, 2018.
    [8]
    R. Kalsar, D. Yadav, A. Sharma, H.G. Brokmeier, J. May, H.W. Höppel, W. Skrotzki, and S. Suwas, Effect of Mg content on microstructure, texture and strength of severely equal channel angular pressed aluminium-magnesium alloys, Mater. Sci. Eng. A, 797(2020), art. No. 140088. doi: 10.1016/j.msea.2020.140088
    [9]
    T. Radetić, M. Popović, E. Romhanji, and B. Verlinden, The effect of ECAP and Cu addition on the aging response and grain substructure evolution in an Al–4.4wt.% Mg alloy, Mater. Sci. Eng. A, 527(2010), No. 3, p. 634. doi: 10.1016/j.msea.2009.08.037
    [10]
    L. Romero-Reséndiz, A. Flores-Rivera, I.A. Figueroa, C. Braham, C. Reyes-Ruiz, I. Alfonso, and G. González, Effect of the initial ECAP passes on crystal texture and residual stresses of 5083 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 801. doi: 10.1007/s12613-020-2017-0
    [11]
    Z.J. Yang, K.K. Wang, and Y. Yang, Optimization of ECAP−RAP process for preparing semisolid billet of 6061 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 792. doi: 10.1007/s12613-019-1895-5
    [12]
    A. Deschamps, F. de Geuser, Z. Horita, S. Lee, and G. Renou, Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy, Acta Mater., 66(2014), p. 105. doi: 10.1016/j.actamat.2013.11.071
    [13]
    P. Bazarnik, Y. Huang, M. Lewandowska, and T.G. Langdon, Structural impact on the Hall–Petch relationship in an Al–5Mg alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 626(2015), p. 9. doi: 10.1016/j.msea.2014.12.027
    [14]
    H.S. Liu, B. Zhang, and G.P. Zhang, Microstructures and mechanical properties of Al/Mg alloy multilayered composites produced by accumulative roll bonding, J. Mater. Sci. Technol., 27(2011), No. 1, p. 15. doi: 10.1016/S1005-0302(11)60019-4
    [15]
    H. Sheikh, Role of shear banding on the microtexture of an Al–Mg alloy processed by hot/high strain rate accumulative roll bonding, Scripta Mater., 64(2011), No. 6, p. 556. doi: 10.1016/j.scriptamat.2010.11.041
    [16]
    X.H. Yang, D.G. Wang, Z.G. Wu, J.H. Yi, S. Ni, Y. Du, and M. Song, A coupled EBSD/TEM study of the microstructural evolution of multi-axial compressed pure Al and Al–Mg alloy, Mater. Sci. Eng. A, 658(2016), p. 16. doi: 10.1016/j.msea.2016.01.080
    [17]
    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Fundamentals of superior properties in bulk NanoSPD materials, Mater. Res. Lett., 4(2016), No. 1, p. 1. doi: 10.1080/21663831.2015.1060543
    [18]
    W.L. Gao, J. Xu, J. Teng, and Z. Lu, Microstructure characteristics and mechanical properties of a 2A66 Al–Li alloy processed by continuous repetitive upsetting and extrusion, J. Mater. Res., 31(2016), No. 16, p. 2506. doi: 10.1557/jmr.2016.235
    [19]
    H. S. Chu, K. S. Liu, and J. W. Yeh, An in situ composite of Al (graphite, Al4C3) produced by reciprocating extrusion, Mater. Sci. Eng. A, 277(2000), No. 1-2, p. 25. doi: 10.1016/S0921-5093(99)00562-6
    [20]
    J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening, Acta Mater., 49(2001), No. 9, p. 1497. doi: 10.1016/S1359-6454(01)00069-6
    [21]
    H. Utsunomiya, K. Hatsuda, T. Sakai, and Y. Saito, Continuous grain refinement of aluminum strip by conshearing, Mater. Sci. Eng. A, 372(2004), No. 1-2, p. 199. doi: 10.1016/j.msea.2003.12.014
    [22]
    M. Murashkin, A. Medvedev, V. Kazykhanov, A. Krokhin, G. Raab, N. Enikeev, and R.Z. Valiev, Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP–Conform, Metals, 5(2015), No. 4, p. 2148. doi: 10.3390/met5042148
    [23]
    C. Etherington, Conform—A new concept for the continuous extrusion forming of metals, J. Eng. Ind., 96(1974), No. 3, p. 893. doi: 10.1115/1.3438458
    [24]
    D.S. Peng, B.Q. Yao, and T.Y. Zuo, The experimental simulation of deformation behavior of metals in the conform process, J. Mater. Process. Technol., 31(1992), No. 1-2, p. 85. doi: 10.1016/0924-0136(92)90009-H
    [25]
    H. Zhang, Q.Q. Yan, and L.X. Li, Microstructures and tensile properties of AZ31 magnesium alloy by continuous extrusion forming process, Mater. Sci. Eng. A, 486(2008), No. 1-2, p. 295. doi: 10.1016/j.msea.2007.09.001
    [26]
    G.J. Raab, R.Z. Valiev, T.C. Lowe and Y.T. Zhu, Continuous processing of ultrafine grained Al by ECAP–Conform, Mater. Sci. Eng. A, 382(2004), No. 1-2, p. 30. doi: 10.1016/j.msea.2004.04.021
    [27]
    J.F. Derakhshan, M.H. Parsa, and H.R. Jafarian, Microstructure and mechanical properties variations of pure aluminum subjected to one pass of ECAP–Conform process, Mater. Sci. Eng. A, 747(2019), p. 120. doi: 10.1016/j.msea.2019.01.058
    [28]
    C. Xu, S. Schroeder, P.B. Berbon, and T.G. Langdon, Principles of ECAP–Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy, Acta Mater., 58(2010), No. 4, p. 1379. doi: 10.1016/j.actamat.2009.10.044
    [29]
    A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Ann., 57(2008), No. 2, p. 716. doi: 10.1016/j.cirp.2008.09.005
    [30]
    V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, and R.Z. Valiev, Microstructure and properties of pure Ti processed by ECAP and cold extrusion, Mater. Sci. Eng. A, 303(2001), No. 1-2, p. 82. doi: 10.1016/S0921-5093(00)01884-0
    [31]
    K.T. Park, H.J. Lee, C.S. Lee, W.J. Nam, and D.H. Shin, Enhancement of high strain rate superplastic elongation of a modified 5154 Al by subsequent rolling after equal channel angular pressing, Scripta. Mater., 51(2004), No. 6, p. 479. doi: 10.1016/j.scriptamat.2004.06.001
    [32]
    K.T. Park, H.J. Lee, C.S. Lee, and D.H. Shin, Effect of post-rolling after ECAP on deformation behavior of ECAPed commercial Al–Mg alloy at 723 K, Mater. Sci. Eng. A, 393(2005), No. 1-2, p. 118. doi: 10.1016/j.msea.2004.09.066
    [33]
    R.Q. Lu, S.W. Zheng, J. Teng, J.M. Hu, D.F. Fu, J.C. Chen, G.D. Zhao, F.L. Jiang, and H. Zhang, Microstructure, mechanical properties and deformation characteristics of Al–Mg–Si alloys processed by a continuous expansion extrusion approach, J. Mater. Sci. Technol., 80(2021), p. 150. doi: 10.1016/j.jmst.2020.11.055
    [34]
    F.L. Jiang, S. Takaki, T. Masumura, R. Uemori, H. Zhang, and T. Tsuchiyama, Nonadditive strengthening functions for cold-worked cubic metals: Experiments and constitutive modeling, Int. J. Plast., 129(2020), art. No. 102700. doi: 10.1016/j.ijplas.2020.102700
    [35]
    F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia, Microstructural evolution during recovery and recrystallization of a nanocrystalline Al–Mg alloy prepared by cryogenic ball milling, Acta Mater., 51(2003), No. 10, p. 2777. doi: 10.1016/S1359-6454(03)00083-1
    [36]
    A. Chaudhuri, A.N. Behera, A. Sarkar, R. Kapoor, R.K. Ray, and S. Suwas, Hot deformation behaviour of Mo-TZM and understanding the restoration processes involved, Acta Mater., 164(2019), p. 153. doi: 10.1016/j.actamat.2018.10.037
    [37]
    R. Kapoor, G.B. Reddy, and A. Sarkar, Discontinuous dynamic recrystallization in α-Zr, Mater. Sci. Eng. A, 718(2018), p. 104. doi: 10.1016/j.msea.2018.01.117
    [38]
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60(2014), p. 130. doi: 10.1016/j.pmatsci.2013.09.002
    [39]
    D.G. Morris and M.A. Muñoz-Morris, Microstructure of severely deformed Al–3Mg and its evolution during annealing, Acta Mater., 50(2002), No. 16, p. 4047. doi: 10.1016/S1359-6454(02)00203-3
    [40]
    K. Huang and R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des., 111(2016), p. 548. doi: 10.1016/j.matdes.2016.09.012
    [41]
    R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, Continuous dynamic recrystallization in an Al–L–Mg–Sc alloy during equal-channel angular extrusion, Mater. Sci. Eng. A, 396(2005), No. 1-2, p. 341. doi: 10.1016/j.msea.2005.01.053
    [42]
    N. Su, R.G. Guan, X. Wang, Y.X. Wang, W.S. Jiang, and H.N. Liu, Grain refinement in an Al–Er alloy during accumulative continuous extrusion forming, J. Alloys Compd., 680(2016), p. 283. doi: 10.1016/j.jallcom.2016.04.137
    [43]
    Y.X. Wang, R.G. Guan, D.W. Hou, Y. Zhang, W.S. Jiang, and H.N. Liu, The effects of eutectic silicon on grain refinement in an Al–Si alloy processed by accumulative continuous extrusion forming, J. Mater. Sci., 52(2017), No. 2, p. 1137. doi: 10.1007/s10853-016-0409-3
    [44]
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Amsterdam, Elsevier, 2004.
    [45]
    Y.F. Shen, R.G. Guan, Z.Y. Zhao, and R.D.K. Misra, Ultrafine-grained Al–0.2Sc–0.1Zr alloy: The mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion, Acta Mater., 100(2015), p. 247. doi: 10.1016/j.actamat.2015.08.043
    [46]
    Z. Aretxabaleta, B. Pereda, and B. López, Analysis of the effect of Al on the static softening kinetics of C–Mn steels using a physically based model, Metall. Mater. Trans. A, 45(2014), No. 2, p. 934. doi: 10.1007/s11661-013-2014-2
    [47]
    M.K. Rehman and H.S. Zurob, A novel approach to model static recrystallization of austenite during hot rolling of Nb microalloyed steel. part I: Precipitate-free case, Metall. Mater. Trans. A, 44(2013), No. 4, p. 1862. doi: 10.1007/s11661-012-1526-5
    [48]
    J.W. Cahn, The impurity-drag effect in grain boundary motion, Acta Metall., 10(1962), No. 9, p. 789. doi: 10.1016/0001-6160(62)90092-5
    [49]
    E.A. Simielli, S. Yue, and J.J. Jonas, Recrystallization kinetics of microalloyed steels deformed in the intercritical region, Metall. Trans. A, 23(1992), No. 2, p. 597. doi: 10.1007/BF02801177
    [50]
    A. Lens, C. Maurice, and J.H. Driver, Grain boundary mobilities during recrystallization of Al–Mn alloys as measured by in situ annealing experiments, Mater. Sci. Eng. A, 403(2005), No. 1-2, p. 144. doi: 10.1016/j.msea.2005.05.010
    [51]
    J. Tang, F.L. Jiang, C.H. Luo, G.W. Bo, K.Y. Chen, J. Teng, D.F. Fu, and H. Zhang, Integrated physically based modeling for the multiple static softening mechanisms following multi-stage hot deformation in Al–Zn–Mg–Cu alloys, Int. J. Plast., 134(2020), art. No. 102809. doi: 10.1016/j.ijplas.2020.102809
    [52]
    Y. Du, Y.A. Chang, B.Y. Huang, W.P. Gong, Z.P. Jin, H.H. Xu, Z.H. Yuan, Y. Liu, Y.H. He, and F.Y. Xie, Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation, Mater. Sci. Eng. A, 363(2003), No. 1-2, p. 140. doi: 10.1016/S0921-5093(03)00624-5
    [53]
    K. Lücke and K. Detert, A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities, Acta Metall., 5(1957), No. 11, p. 628. doi: 10.1016/0001-6160(57)90109-8
    [54]
    H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon, Oxford, 1982.
    [55]
    O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, Y. Kimura, and K. Tsuzaki, Grain refinement in a commercial Al–Mg–Sc alloy under hot ECAP conditions, Mater. Sci. Eng. A, 444(2007), No. 1-2, p. 18. doi: 10.1016/j.msea.2006.06.081
    [56]
    C. Xu, Z. Horita, and T.G. Langdon, The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion, Acta Mater., 56(2008), No. 18, p. 5168. doi: 10.1016/j.actamat.2008.06.036
    [57]
    L.S. To´th, A. Molinari, and Y. Estrin, Strain hardening at large strains as predicted by dislocation based polycrystal plasticity model, J. Eng. Mater. Technol., 124(2002), No. 1, p. 71. doi: 10.1115/1.1421350
    [58]
    P.W.J. McKenzie, R. Lapovok, and Y. Estrin, The influence of back pressure on ECAP processed AA 6016: Modeling and experiment, Acta Mater., 55(2007), No. 9, p. 2985. doi: 10.1016/j.actamat.2006.12.038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1924) PDF Downloads(94) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return