Zedong Wang, Kaibo Nie, Kunkun Deng, and Jungang Han, Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg–2Zn–0.8Sr–0.2Ca matrix composite reinforced by TiC nano-particles, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp.1981-1990. https://dx.doi.org/10.1007/s12613-021-2353-8
Cite this article as: Zedong Wang, Kaibo Nie, Kunkun Deng, and Jungang Han, Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg–2Zn–0.8Sr–0.2Ca matrix composite reinforced by TiC nano-particles, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp.1981-1990. https://dx.doi.org/10.1007/s12613-021-2353-8

Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg–2Zn–0.8Sr–0.2Ca matrix composite reinforced by TiC nano-particles

  • A low-alloyed Mg–2Zn–0.8Sr–0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic, and then the as-cast composite was hot extruded. The results indicated that the volume fraction of dynamical recrystallization and the recrystallized grain size have a certain decline at lower extrusion temperature or rate. The finest grain size of ~0.30 µm is obtained in the sample extruded at 200°C and 0.1 mm/s. The as-extruded sample displays a strong basal texture intensity, and the basal texture intensity increases to 5.937 mud while the extrusion temperature increases from 200 to 240°C. The ultra-high mechanical properties (ultimate tensile strength of 480.2 MPa, yield strength of 462 MPa) are obtained after extrusion at 200°C with a rate of 0.1 mm/s. Among all strengthening mechanisms for the present composite, the grain refinement contributes the most to the increase in strength. A mixture of cleavage facets and dimples were observed in the fracture surfaces of three as-extruded nanocomposites, which explain a mix of brittle-ductile fracture way of the samples.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return