Dong Zhao, Feng Ye, Binbin Liu, Haoyang Du, Yaakov B. Unigovski, Emmanuel M. Gutman,  and Roni Shneck, Enhancing the formability of FeSi6.5 steel by the anodic polarization, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2072-2078. https://doi.org/10.1007/s12613-021-2356-5
Cite this article as:
Dong Zhao, Feng Ye, Binbin Liu, Haoyang Du, Yaakov B. Unigovski, Emmanuel M. Gutman,  and Roni Shneck, Enhancing the formability of FeSi6.5 steel by the anodic polarization, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2072-2078. https://doi.org/10.1007/s12613-021-2356-5
Research Article

Enhancing the formability of FeSi6.5 steel by the anodic polarization

+ Author Affiliations
  • Corresponding author:

    Feng Ye    E-mail: yefeng@skl.ustb.edu.cn

  • Received: 28 June 2021Revised: 15 September 2021Accepted: 18 September 2021Available online: 23 September 2021
  • The effect of anodic polarization on the plastic deformation behavior and formability of FeSi6.5 steel at room temperature was experimentally investigated through uniaxial tensile and drawing of wire specimen in sulfuric acid solution with current densities of 0–40 mA/cm2. The formability of the FeSi6.5 steel was significantly improved after the anodic polarization. The plastic elongation of the specimen as an anode in the electrochemical environment was 4.4%–7%, but 2.7% in the air. The drawing force under the anodic polarization decreased by 12.5%–26% compared to that in deionized water. The softening is mainly attributed to the relief in work hardening caused by surface atomic dissolution. The work hardening mechanism of the FeSi6.5 steel wires under anodic polarization condition was analyzed using Hollomon equation and Voce relation combined with the Kocks–Mecking approach. These data support the view that the surface atom dissolution facilitates dislocation slip. FeSi6.5 steel wires were obtained using electrochemical cold drawing and presented a smooth surface and good ductility without crack after five-pass drawing with a total cross-section area reduction of 88%. The drawing with the assistance of anodic polarization is a promising technology for processing hard and brittle metal materials.
  • loading
  • [1]
    M. Komatsubara, K. Sadahiro, O. Kondo, T. Takamiya, and A. Honda, Newly developed electrical steel for high-frequency use, J. Magn. Magn. Mater., 242-245(2002), p. 212. doi: 10.1016/S0304-8853(01)01164-7
    [2]
    H. Ninomiya, Y. Tanaka, A. Hiura, and Y. Takada, Magnetostriction and applications of 6.5% Si steel sheet, J. Appl. Phys., 69(1991), No. 8, p. 5358. doi: 10.1063/1.348028
    [3]
    Y.F. Liang, J.P. Lin, F. Ye, Y.J. Li, Y.L. Wang, and G.L. Chen, Microstructure and mechanical properties of rapidly quenched Fe–6.5 wt.% Si alloy, J. Alloys Compd., 504(2010), No. supplement1, p. S476. doi: 10.1016/j.jallcom.2010.03.075
    [4]
    Y.F. Liang, F. Ye, J.P. Lin, Y.L. Wang, and G.L. Chen, Effect of annealing temperature on magnetic properties of cold rolled high silicon steel thin sheet, J. Alloys Compd., 491(2010), No. 1-2, p. 268. doi: 10.1016/j.jallcom.2009.10.118
    [5]
    X.L. Wang, W.N. Zhang, Z.Y. Liu, H.Z. Li, and G.D. Wang, Improvement on room-temperature ductility of 6.5 wt.% Si steel by stress-relief annealing treatments after warm rolling, Mater. Charact., 122(2016), p. 206. doi: 10.1016/j.matchar.2016.11.006
    [6]
    H. Li, Y.F. Liang, W. Yang, F. Ye, J.P. Lin, and J.X. Xie, Disordering induced work softening of Fe–6.5 wt%Si alloy during warm deformation, Mater. Sci. Eng. A, 628(2015), p. 262. doi: 10.1016/j.msea.2015.01.058
    [7]
    X.L. Wang, H.Z. Li, W.N. Zhang, Z.Y. Liu, G.D. Wang, Z.H. Luo, and F.Q. Zhang, The work softening by deformation-induced disordering and cold rolling of 6.5 wt pct Si steel thin sheets, Metall. Mater. Trans. A, 47(2016), No. 9, p. 4659. doi: 10.1007/s11661-016-3613-5
    [8]
    E.M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific Publishing, Singapore, 1994.
    [9]
    E.M. Gutman, Y. Unigovski, R. Shneck, F. Ye, and Y. Liang, Electrochemically enhanced surface plasticity of steels, Appl. Surf. Sci., 388(2016), p. 49. doi: 10.1016/j.apsusc.2016.04.071
    [10]
    R.W. Revie and H.H. Uhlig, Effect of applied potential and surface dissolution on the creep behavior of copper, Acta Metall., 22(1974), No. 5, p. 619. doi: 10.1016/0001-6160(74)90159-X
    [11]
    H.H. Uhlig, Effect of surface dissolution on plastic deformation of iron and steel, J. Electrochem. Soc., 123(1976), No. 11, p. 1699. doi: 10.1149/1.2132671
    [12]
    Y. Unigovski, Z. Keren, A. Eliezer, and E.M. Gutman, Creep behavior of pure magnesium and Mg–Al alloys in active environments, Mater. Sci. Eng. A, 398(2005), No. 1-2, p. 188. doi: 10.1016/j.msea.2005.03.017
    [13]
    Q.H. Wan and D.J. Quesnel, Effects of NaCl, pH, and potential on the static creep behavior of AA1100, Metall. Mater. Trans. A, 44(2013), No. 3, p. 1311. doi: 10.1007/s11661-012-1294-2
    [14]
    D. Zhao, B. Yu, B.B. Liu, and F. Ye, The softening effect during electrochemical drawing of AISI 1070 steel wire, Int. J. Mod. Phys. B, 34(2020), No. 1n03, art. No. 2040037. doi: 10.1142/S0217979220400378
    [15]
    D. Zhao, F. Ye, Y.B. Unigovski, E.M. Gutman, and R. Shneck, Enhanced corrosion resistance of hard steel wires produced by electrochemical cold drawing, J. Met.,Mater. Miner., 29(2019), No. 3, p. 10.
    [16]
    L. Li, T. Chen, S. Zhang, E.M. Gutman, Y. Unigovski, and F. Yan, Electrochemical cold drawing of Mg alloy bars, Mater. Sci. Technol., 33(2017), No. 2, p. 244. doi: 10.1080/02670836.2016.1187333
    [17]
    L.L. Li, T.J. Chen, S.Q. Zhang, and F.Y. Yan, Electrochemical cold drawing of in situ Mg2Sip/AM60B composite: A comparison with the AM60B alloy, J. Mater. Process. Technol., 240(2017), p. 33. doi: 10.1016/j.jmatprotec.2016.09.007
    [18]
    Y. Shao, L.M. Yu, Y.C. Liu, Z.Q. Ma, H.J. Li, and J.F. Wu, Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 597. doi: 10.1007/s12613-019-1768-y
    [19]
    D.C. Ludwigson, Modified stress-strain relation for FCC metals and alloys, Metall. Trans., 2(1971), No. 10, p. 2825. doi: 10.1007/BF02813258
    [20]
    E. Voce, The relationship between stress and strain for homogeneous deformations, J. Inst. Met., 74(1948), p. 537.
    [21]
    U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: The FCC case, Prog. Mater. Sci., 48(2003), No. 3, p. 171. doi: 10.1016/S0079-6425(02)00003-8
    [22]
    C.L. Mao, C.X. Liu, L.M. Yu, H.J. Li, and Y.C. Liu, The correlation among microstructural parameter and dynamic strain aging (DSA) in influencing the mechanical properties of a reduced activated ferritic-martensitic (RAFM) steel, Mater. Sci. Eng. A, 739(2019), p. 90. doi: 10.1016/j.msea.2018.10.023
    [23]
    J.H. Hollomon, Tensile deformation, Trans. AIME, 162(1945), p. 268.
    [24]
    L.Y. Zhou, D. Zhang, and Y.Z. Liu, Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 755. doi: 10.1007/s12613-014-0968-8
    [25]
    H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solids, 1(1952), No. 1, p. 1. doi: 10.1016/0022-5096(52)90002-1
    [26]
    R. Kishore and T.K. Sinha, Analysis of the stress–strain curves of a modified 9Cr–1Mo steel by the voce equation, Metall. Mater. Trans. A, 27(1996), No. 10, p. 3340. doi: 10.1007/BF02663885
    [27]
    D.P.R. Palaparti, B.K. Choudhary, E. Isaac Samuel, V.S. Srinivasan, and M.D. Mathew, Influence of strain rate and temperature on tensile stress–strain and work hardening behaviour of 9Cr–1Mo ferritic steel, Mater. Sci. Eng. A, 538(2012), p. 110. doi: 10.1016/j.msea.2011.12.109
    [28]
    G. Angella, R. Donnini, M. Maldini, and D. Ripamonti, Combination between Voce formalism and improved Kocks–Mecking approach to model small strains of flow curves at high temperatures, Mater. Sci. Eng. A, 594(2014), p. 381. doi: 10.1016/j.msea.2013.11.088
    [29]
    G.X. Sun, Y. Zhang, S.C. Sun, J.J. Hu, Z.H. Jiang, C.T. Ji, and J.S. Lian, Plastic flow behavior and its relationship to tensile mechanical properties of high nitrogen nickel-free austenitic stainless steel, Mater. Sci. Eng. A, 662(2016), p. 432. doi: 10.1016/j.msea.2016.03.057
    [30]
    C. Girish Shastry, M.D. Mathew, K. Bhanu Sankara Rao, and S.L. Mannan, Analysis of elevated temperature flow and work hardening behaviour of service-exposed 2.25Cr–1Mo steel using Voce equation, Int. J. Press. Vessels Pip., 81(2004), No. 3, p. 297. doi: 10.1016/j.ijpvp.2003.11.016
    [31]
    G. Sainath, B.K. Choudhary, J. Christopher, E. Isaac Samuel, and M.D. Mathew, Applicability of Voce equation for tensile flow and work hardening behaviour of P92 ferritic steel, Int. J. Press. Vessels Pip., 132-133(2015), p. 1. doi: 10.1016/j.ijpvp.2015.05.004
    [32]
    W. Yang, H. Li, K. Yang, Y.F. Liang, J. Yang, and F. Ye, Hot drawn Fe–6.5 wt.%Si wires with good ductility, Mater. Sci. Eng. B, 186(2014), p. 79. doi: 10.1016/j.mseb.2014.03.013
    [33]
    Y. Estrin and H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metall., 32(1984), No. 1, p. 57. doi: 10.1016/0001-6160(84)90202-5
    [34]
    J. Christopher, B.K. Choudhary, E. Isaac Samuel, V.S. Srinivasan, and M.D. Mathew, Tensile flow and work hardening behaviour of 9Cr–1Mo ferritic steel in the frame work of Voce relationship, Mater. Sci. Eng. A, 528(2011), No. 21, p. 6589. doi: 10.1016/j.msea.2011.05.026
    [35]
    P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
    [36]
    J.H. Zhou, Y.F. Shen, and N. Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 335. doi: 10.1007/s12613-020-2121-1
    [37]
    H.W. Zhang, Y.M. Zhao, Y.H. Wang, C.L. Zhang, and Y. Peng, On the microstructural evolution pattern toward nano–scale of an AISI 304 stainless steel during high strain rate surface deformation, J. Mater. Sci. Technol., 44(2020), p. 148. doi: 10.1016/j.jmst.2020.01.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(689) PDF Downloads(45) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return