Zhongbao Que, Liang Chu, Shuaibo Zhai, Yifei Feng, Chen Chen, Wei Liu, Ruiyuan Hu, Jing Hu, and Xing’ao Li, Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp.1280-1285. https://dx.doi.org/10.1007/s12613-021-2361-8
Cite this article as: Zhongbao Que, Liang Chu, Shuaibo Zhai, Yifei Feng, Chen Chen, Wei Liu, Ruiyuan Hu, Jing Hu, and Xing’ao Li, Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp.1280-1285. https://dx.doi.org/10.1007/s12613-021-2361-8

Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells

  • The self-assembly process for compatible functional layers of devices is a simple, feasible, and energy-saving strategy. In mesoporous perovskite solar cells (PSCs), compact and scaffold TiO2 films generally function as the hole-blocking and electron-transporting layers, respectively. However, both of these layers are usually generated through a high-temperature annealing process. Here, we deposited TiO2 compact films through a room-temperature self-assembly process as effective hole-blocking layers for PSCs. The thickness of TiO2 compact films can be easily controlled by the deposition time. Through the optimization of TiO2 compact films (80 nm), the power conversion efficiency (PCE) of mesoporous PSCs without and with hole conductor layers increases up to 10.66% and 17.95%, respectively. Notably, an all-low-temperature planar PSC with the self-assembled TiO2 layer exhibits a PCE of 16.41%.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return