Cite this article as: |
Nana A. Amoah, Guang Xu, Yang Wang, Jiayu Li, Yongming Zou, and Baisheng Nie, Application of low-cost particulate matter sensors for air quality monitoring and exposure assessment in underground mines: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1475-1490. https://doi.org/10.1007/s12613-021-2378-z |
Guang Xu E-mail: guang.xu@mst.edu
[1] |
D.E. Pollock, J.D. Potts, and G.J. Joy, Investigation into dust exposures and mining practices in mines in the southern appalachian region, Min. Eng., 62(2010), No. 2, p. 44.
|
[2] |
D.J. Blackley, J.B. Crum, C.N. Halldin, E. Storey, and A.S. Laney, Resurgence of progressive massive fibrosis in coal miners – Eastern Kentucky, 2016, MMWR Morb. Mortal. Week. Rep., 65(2016), No. 49, p. 1385. doi: 10.15585/mmwr.mm6549a1
|
[3] |
T. Moreno, P. Trechera, X. Querol, R. Lah, D. Johnson, A. Wrana, and B. Williamson, Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health, Int. J. Coal Geol., 203(2019), p. 52. doi: 10.1016/j.coal.2019.01.006
|
[4] |
P. Chang, G. Xu, and J.X. Huang, Numerical study on DPM dispersion and distribution in an underground development face based on dynamic mesh, Int. J. Min. Sci. Technol., 30(2020), No. 4, p. 471. doi: 10.1016/j.ijmst.2020.05.005
|
[5] |
M. Thiruvengadam, Y. Zheng, and J.C. Tien, DPM simulation in an underground entry: Comparison between particle and species models, Int. J. Min. Sci. Technol., 26(2016), No. 3, p. 487. doi: 10.1016/j.ijmst.2016.02.018
|
[6] |
M.E. Birch and J.D. Noll, Submicrometer elemental carbon as a selective measure of diesel particulate matter in coal mines, J. Environ. Monit., 6(2004), No. 10, p. 799. doi: 10.1039/b407507b
|
[7] |
Thermo Fisher Scientific, Personal Dust Monitor Model PDM3700: Instruction Manual, Franklin, MA, 2014.
|
[8] |
Flir Systems Inc, Flir AirtecTM Diesel Particulate Monitor: Operators Manual, Nashua, NH, 2015
|
[9] |
M. Badura, P. Batog, A. Drzeniecka-Osiadacz, and P. Modzel, Evaluation of low-cost sensors for ambient PM2.5 monitoring, J. Sens., 2018(2018), art. No. 5096540. doi: 10.1155/2018/5096540
|
[10] |
S. Collingwood, J. Zmoos, L. Pahler, B. Wong, D. Sleeth, and R. Handy, Investigating measurement variation of modified low-cost particle sensors, J. Aerosol Sci., 135(2019), p. 21. doi: 10.1016/j.jaerosci.2019.04.017
|
[11] |
B. Feenstra, V. Papapostolou, S. Hasheminassab, H. Zhang, B.D. Boghossian, D. Cocker, and A. Polidori, Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site, Atmos. Environ., 216(2019), art. No. 116946. doi: 10.1016/j.atmosenv.2019.116946
|
[12] |
X. Qiao, Q. Zhang, D. Wang, J. Hao, and J. Jiang, Improving data reliability: A quality control practice for low-cost PM2.5 sensor network, Sci. Total Environ., 799(2021), p. 146381. doi: 10.1016/j.scitotenv.2021.146381
|
[13] |
K.E. Kelly, J. Whitaker, A. Petty, C. Widmer, A. Dybwad, D. Sleeth, R. Martin, and A. Butterfield, Ambient and laboratory evaluation of a low-cost particulate matter sensor, Environ. Pollut., 221(2017), p. 491. doi: 10.1016/j.envpol.2016.12.039
|
[14] |
D. Back, D. Theisen, W. Seo, C.S.J. Tsai, and D.B. Janes, Development of interdigitated capacitive sensor for real-time monitoring of sub-micron and nanoscale particulate matters in personal sampling device for mining environment, IEEE Sens. J., 20(2020), No. 19, p. 11588. doi: 10.1109/JSEN.2020.2995960
|
[15] |
M. Alvarado, F. Gonzalez, A. Fletcher, and A. Doshi, Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites, Sensors, 15(2015), No. 8, p. 19667. doi: 10.3390/s150819667
|
[16] |
A. Leavey, Y. Fu, M. Sha, A. Kutta, C.Y. Lu, W.N. Wang, B. Drake, Y.X. Chen, and P. Biswas, Air quality metrics and wireless technology to maximize the energy efficiency of HVAC in a working auditorium, Build. Environ., 85(2015), p. 287. doi: 10.1016/j.buildenv.2014.11.039
|
[17] |
US-EPA, List of designated reference and equivalent methods, [in] Water Environ. Federation Procedings, North Carolina, 2005, p. 726.
|
[18] |
J.C. Volkwein, R.P. Vinson, S.J. Page, L.J. McWilliams, G.J. Joy, S.E. Mischler, and D.P. Tuchman, Laboratory and Field Performance of A Continuously Measuring Personal Respirable Dust Monitor, US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, 2006.
|
[19] |
S.J. Page, J.C. Volkwein, R.P. Vinson, G.J. Joy, S.E. Mischler, D.P. Tuchman, and L.J. McWilliams, Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler, J. Environ. Monit., 10(2008), No. 1, p. 96. doi: 10.1039/B714381H
|
[20] |
J.C. Volkwein, E.D. Thimons, C. Yanak, D. Dunham, H. Patashnick, E. Rupprecht, Implementing a new coal dust monitor as an engineering tool, [in] 6th International Scientific Conference of the International Occupational Hygiene Association Procedings, Pilanesberg, South Africa, 2005, p. 201
|
[21] |
J.C. Volkwein, R.P. Vinson, L.J. McWilliams, D.P. Tuchman, and S.E. Mischler, Performance of a New Personal Respirable Dust Monitor for Mine Use, U.S. Department of Health and Human Services, Pittsburgh, PA, 2004
|
[22] |
National Institute of Occupational Safety and Health, Diesel Particulate Matter (as Elemental Carbon), 3rd ed., DHHS (NIOSH) Publication, Cincinnati, OH, 2003 [2020-06-10]. https://www.cdc.gov/niosh/docs/2003-154/pdfs/5040.pdf
|
[23] |
C. Barrett, E. Sarver, E. Cauda, J. Noll, S. Vanderslice, and J. Volkwein, Comparison of several DPM field monitors for use in underground mining applications, Aerosol Air Qual. Res., 19(2019), No. 11, p. 2367. doi: 10.4209/aaqr.2019.06.0319
|
[24] |
M.K. Mensah, K. Mensah-Darkwa, C. Drebenstedt, B.V. Annam, and E.K. Armah, Occupational respirable mine dust and diesel particulate matter hazard assessment in an underground gold mine in Ghana, J. Heal. Pollut., 10(2020), No. 25, p. (200305). doi: 10.5696/2156-9614-10.25.200305
|
[25] |
J.D. Noll and S. Janisko, Evaluation of a wearable monitor for measuring real-time diesel particulate matter concentrations in several underground mines, J. Occup. Environ. Hyg., 10(2013), No. 12, p. 716. doi: 10.1080/15459624.2013.821575
|
[26] |
Thermo Scientific, Model pDR-1000AN/1200 Personal DATARAM Instruction Manual, Thermo Fisher Scientific, Franklin, MA, 2013 [2020-08-20]. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/EPM-manual-PDR1000an.pdf
|
[27] |
Thermo Scientific, MIE pDR-1500 Instruction Manual, Thermo Fisher Scientific, Franklin, MA, 2017 [2020-08-20]. https://assets.thermofisher.com/TFS-Assets/CAD/manuals/manual-pDR-1500.pdf
|
[28] |
G.J. Chekan, J.F. Colinet, F.N. Kissell, J.P. Rider, R.P. Vinson, and J.C. Volkwein, Performance of a Light-Scattering Dust Monitor in Underground Mines, US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh, PA, 2005.
|
[29] |
H. Grimm and D.J. Eatough, Aerosol measurement: The use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction, J. Air Waste Manag. Assoc., 59(2009), No. 1, p. 101. doi: 10.3155/1047-3289.59.1.101
|
[30] |
M. Kowalska, A. Mainka, and W. Mucha, The usefulness of an optical monitor for the assessment of human exposure to fine dust in indoor air, Medycyna Pracy, 70(2019), No. 2, p. 213. doi: 10.13075/mp.5893.00780
|
[31] |
N. Masson, R. Piedrahita, and M. Hannigan, Approach for quantification of metal oxide type semiconductor gas sensors used for ambient air quality monitoring, Sens. Actuators, B, 208(2015), p. 339. doi: 10.1016/j.snb.2014.11.032
|
[32] |
M. van den Bossche, N.T. Rose, and S.F.J. de Wekker, Potential of a low-cost gas sensor for atmospheric methane monitoring, Sens. Actuators, B, 238(2017), p. 501.
|
[33] |
J.Y. Li, Recent Advances in Low-cost Particulate Matter Sensor: Calibration and Application [Dissertation], Washington University in St. Louis, St. Louis, 2019.
|
[34] |
J.Y. Li and P. Biswas, Optical characterization studies of a low-cost particle sensor, Aerosol Air Qual. Res., 17(2017), No. 7, p. 1691. doi: 10.4209/aaqr.2017.02.0085
|
[35] |
M. Budde, R. El Masri, T. Riedel, and M. Beigl, Enabling low-cost particulate matter measurement for participatory sensing scenarios, [in] Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia, Karlsruhe, 2013, art. No. 19.
|
[36] |
S. Kelleher, C. Quinn, D. Miller-Lionberg, and J. Volckens, A low-cost particulate matter (PM2.5) monitor for wildland fire smoke, Atmos. Meas. Tech., 11(2018), No. 2, p. 1087. doi: 10.5194/amt-11-1087-2018
|
[37] |
L.F. Weissert, K. Alberti, G. Miskell, W. Pattinson, J.A. Salmond, G. Henshaw, and D.E. Williams, Low-cost sensors and microscale land use regression: Data fusion to resolve air quality variations with high spatial and temporal resolution, Atmos. Environ., 213(2019), p. 285. doi: 10.1016/j.atmosenv.2019.06.019
|
[38] |
N. Zimmerman, A.A. Presto, S.P.N. Kumar, J. Gu, A. Hauryliuk, E.S. Robinson, A.L. Robinson, and R. Subramanian, A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, Atmos. Meas. Tech., 11(2018), No. 1, p. 291. doi: 10.5194/amt-11-291-2018
|
[39] |
R. Piedrahita, Y. Xiang, N. Masson, J. Ortega, A. Collier, Y. Jiang, K. Li, R.P. Dick, Q. Lv, M. Hannigan, and L. Shang, The next generation of low-cost personal air quality sensors for quantitative exposure monitoring, Atmos. Meas. Tech., 7(2014), No. 10, p. 3325. doi: 10.5194/amt-7-3325-2014
|
[40] |
S.N. Sousan, K. Koehler, L. Hallett, and T.M. Peters, Evaluation of the Alphasense optical particle counter (OPC-N2) and the Grimm portable aerosol spectrometer (PAS-1.108), Aerosol Sci. Technol., 50(2016), No. 12, p. 1352. doi: 10.1080/02786826.2016.1232859
|
[41] |
Y. Wang, J.Y. Li, H. Jing, Q. Zhang, J.K. Jiang, and P. Biswas, Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement, Aerosol Sci. Technol., 49(2015), No. 11, p. 1063. doi: 10.1080/02786826.2015.1100710
|
[42] |
A. Manikonda, N. Zíková, P.K. Hopke, and A.R. Ferro, Laboratory assessment of low-cost PM monitors, J. Aerosol Sci., 102(2016), p. 29. doi: 10.1016/j.jaerosci.2016.08.010
|
[43] |
S.N. Sousan, K. Koehler, G. Thomas, J.H. Park, M. Hillman, A. Halterman, and T.M. Peters, Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols, Aerosol Sci. Technol., 50(2016), No. 5, p. 462. doi: 10.1080/02786826.2016.1162901
|
[44] |
M. Budde, M. Busse, and M. Beigl, Investigating the use of commodity dust sensors for the embedded measurement of particulate matter, [in] 2012 Ninth International Conference Networked Sensng Systems, Antwerp, 2012, p. 1.
|
[45] |
E. Austin, I. Novosselov, E. Seto, and M.G. Yost, Laboratory evaluation of the shinyei PPD42NS low-cost particulate matter sensor, PLoS One, 10(2015), No. 9, art. No. e0137789. doi: 10.1371/journal.pone.0137789
|
[46] |
S.N. Sousan, K. Koehler, L. Hallett, and T.M. Peters, Evaluation of consumer monitors to measure particulate matter, J. Aerosol Sci., 107(2017), p. 123. doi: 10.1016/j.jaerosci.2017.02.013
|
[47] |
C. Lin, J. Gillespie, M.D. Schuder, W. Duberstein, I.J. Beverland, and M.R. Heal, Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide, Atmos. Environ., 100(2015), p. 111. doi: 10.1016/j.atmosenv.2014.11.002
|
[48] |
M. Budde, M. Köpke, and M. Beigl, Robust in situ data reconstruction from poisson noise for low-cost, mobile, non-expert environmental sensing, [in] Proceedings of the 2015 ACM International Symposium on Wearable Computers, Osaka, 2015, p. 179.
|
[49] |
A. Shrivastava and V.B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods, Chron. Young Sci., 2(2011), No. 1, p. 21. doi: 10.4103/2229-5186.79345
|
[50] |
A.C. Lewis, J.D. Lee, P.M. Edwards, M.D. Shaw, M.J. Evans, S.J. Moller, K.R. Smith, J.W. Buckley, M. Ellis, S.R. Gillot, and A. White, Evaluating the performance of low cost chemical sensors for air pollution research, Faraday Discuss., 189(2016), p. 85. doi: 10.1039/C5FD00201J
|
[51] |
A.C. Rai, P. Kumar, F. Pilla, A.N. Skouloudis, S. Di Sabatino, C. Ratti, A. Yasar, and D. Rickerby, End-user perspective of low-cost sensors for outdoor air pollution monitoring, Sci. Total. Environ., 607-608(2017), p. 691. doi: 10.1016/j.scitotenv.2017.06.266
|
[52] |
H. Kaiser and H. Specker, Evaluation and comparison of analytical methods, Fresenius' Z. Anal. Chem., 149(1956), p. 46. doi: 10.1007/BF00454145
|
[53] |
P. Schneider, N. Castell, M. Vogt, F.R. Dauge, W.A. Lahoz, and A. Bartonova, Mapping urban air quality in near real-time using observations from low-cost sensors and model information, Environ. Int., 106(2017), p. 234. doi: 10.1016/j.envint.2017.05.005
|
[54] |
N. Castell, F.R. Dauge, P. Schneider, M. Vogt, U. Lerner, B. Fishbain, D. Broday, and A. Bartonova, Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int., 99(2017), p. 293. doi: 10.1016/j.envint.2016.12.007
|
[55] |
B. Maag, Z.M. Zhou, and L. Thiele, A survey on sensor calibration in air pollution monitoring deployments, IEEE Internet Things J., 5(2018), No. 6, p. 4857. doi: 10.1109/JIOT.2018.2853660
|
[56] |
M.B. Marinov, S. Hensel, B. Ganev, and G. Nikolov, Performance evaluation of low-cost particulate matter sensors, [in] 2017 XXVI International Scientific Conference Electronics (ET), Sozopol, 2017, p. 1.
|
[57] |
R. Jayaratne, X.T. Liu, P. Thai, M. Dunbabin, and L. Morawska, The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog, Atmos. Meas. Tech., 11(2018), No. 8, p. 4883. doi: 10.5194/amt-11-4883-2018
|
[58] |
M.L. Gao, J.J. Cao, and E. Seto, A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi'an, China, Environ. Pollut., 199(2015), p. 56. doi: 10.1016/j.envpol.2015.01.013
|
[59] |
M. Canu, B. Galvis, R. Morales, O. Ramírez, and M. Madelin, Understanding the Shinyei PPD24NS low-cost dust sensor, [in] 2018 IEEE International Conference on Environmental Engineering, Milan, 2018, p. 1.
|
[60] |
M. Quinten, R. Friehmelt, and K.F. Ebert, Sizing of aggregates of spheres by a white-light optical particle counter with 90° scattering angle, J. Aerosol Sci., 32(2001), No. 1, p. 63. doi: 10.1016/S0021-8502(00)00043-4
|
[61] |
J.Y. Kim, S.R. Magari, R.F. Herrick, T.J. Smith, D.C. Christiani, and D.C. Christiani, Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method, J. Occup. Environ. Hyg., 1(2004), No. 11, p. 707. doi: 10.1080/15459620490515833
|
[62] |
J.G. Liu, L.Z. Jin, J.Y. Wang, S.N. Ou, J.Z. Ghio, and T.Y. Wang, Micromorphology and physicochemical properties of hydrophobic blasting dust in iron mines, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 665. doi: 10.1007/s12613-019-1793-x
|
[63] |
J.G. Liu, L.Z. Jin, J.Y. Wang, S.N. Ou, and T.Y. Wang, Co-influencing mechanisms of physicochemical properties of blasting dust in iron mines on its wettability, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1080. doi: 10.1007/s12613-019-1874-x
|
[64] |
O.A.M. Popoola, G.B. Stewart, M.I. Mead, and R.L. Jones, Development of a baseline-temperature correction methodology for electrochemical sensors and its implications for long-term stability, Atmos. Environ., 147(2016), p. 330. doi: 10.1016/j.atmosenv.2016.10.024
|
[65] |
D. Liu, Q. Zhang, J.K. Jiang, and D.R. Chen, Performance calibration of low-cost and portable particular matter (PM) sensors, J. Aerosol Sci., 112(2017), p. 1. doi: 10.1016/j.jaerosci.2017.05.011
|
[66] |
K.K. Johnson, M.H. Bergin, A.G. Russell, and G.S.W. Hagler, Field test of several low-cost particulate matter sensors in high and low concentration urban environments, Aerosol Air Qual. Res., 18(2018), No. 3, p. 565. doi: 10.4209/aaqr.2017.10.0418
|
[67] |
W.J. Chou, G.P. Yu, and J.H. Huang, Corrosion resistance of ZrN films on AISI 304 stainless steel substrate, Surf. Coat. Technol., 167(2003), No. 1, p. 59. doi: 10.1016/S0257-8972(02)00882-4
|
[68] |
T. Sayahi, D. Kaufman, T. Becnel, K. Kaur, A.E. Butterfield, S. Collingwood, Y. Zhang, P.E. Gaillardon, and K.E. Kelly, Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors, Environ. Pollut., 255(2019), art. No. 113131. doi: 10.1016/j.envpol.2019.113131
|
[69] |
L. Spinelle, M. Gerboles, M. Aleixandre, and F. Bonavitacola, Evaluation of metal oxides sensors for the monitoring of O3 in ambient air at ppb level, Chem. Eng. Trans., 54(2016), p. 319. doi: 10.3303/CET1654054
|
[70] |
L. Spinelle, M. Gerboles, and M. Aleixandre, Performance evaluation of amperometric sensors for the monitoring of O3 and NO2 in ambient air at ppb level, Procedia Eng., 120(2015), p. 480. doi: 10.1016/j.proeng.2015.08.676
|
[71] |
V. Papapostolou, H. Zhang, B.J. Feenstra, and A. Polidori, Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions, Atmos. Environ., 171(2017), p. 82. doi: 10.1016/j.atmosenv.2017.10.003
|
[72] |
A. Polidori, V. Papapostolou, H. Zhang, Laboratory Evaluation of Low-Cost Air Quality Sensors, South Coast Air Quality Management District, Diamondbar, CA, 2016, p. 1.
|
[73] |
A. Ankilov, A. Baklanov, M. Colhoun, K.H. Enderle, J. Gras, Y. Julanov, D. Kaller, A. Lindner, A.A. Lushnikov, R. Mavliev, F. McGovern, A. Mirme, T.C. O'Connor, J. Podzimek, O. Preining, G.P. Reischl, R. Rudolf, G.J. Sem, and V. Zagaynov, Intercomparison of number concentration measurements by various aerosol particle counters, Atmos. Res., 62(2002), No. 3-4, p. 177. doi: 10.1016/S0169-8095(02)00010-8
|
[74] |
A.D. Gillies and H.W. Wu, A new real time personal respirable dust monitor, [in] Coal Operators’ Conference Procedings, Wollongong, 2006, p. 77.
|
[75] |
A.L. Northcross, R.J. Edwards, M.A. Johnson, Z.M. Wang, K. Zhu, T. Allen, and K.R. Smith, A low-cost particle counter as a realtime fine-particle mass monitor, Environ. Sci. Process. Impacts, 15(2013), No. 2, p. 433. doi: 10.1039/C2EM30568B
|
[76] |
J. Noll and S. Janisko, Using laser absorption techniques to monitor diesel particulate matter exposure in underground stone mines, Proc. SPIE Int. Soc. Opt. Eng., 6759(2007), No. 47, art. No. 67590P. doi: 10.1117/12.737790
|
[77] |
G. Olivares, I. Longley, and G. Coulson, Development of a low-cost device for observing indoor particle levels associated with source activities in the home, [in] International Society of Eposure Science (ISES), Seattle, WA, 2012, p. 2456.
|
[78] |
R. Williams, R. Long, M. Beaver, A. Kaufman, F. Zeiger, and M. Heimbinder, EPA Sensor Evaluation Report, U.S. Environmental Protection Agency, Washington, DC, 2014, p. 1.
|
[79] |
B.D. Grover, M. Kleinman, N.L. Eatough, D.J. Eataugh, P.K. Hopke, R.W. Long, W.E. Wilson, M.B. Meyer, and J.L. Ambs, Measurement of total PM2.5 mass (nonvolatile plus semivolatile) with the filter dynamic measurement system tapered element oscillating microbalance monitor, J. Geophys. Res., 110(2005), No. D7, art. No. D07S03. doi: :10.1029/2004JD004995
|
[80] |
W. Zhu, F. Kapteijn, and J.A. Moulijn, Diffusion of linear and branched C6 alkanes in silicalite-1 studied by the tapered element oscillating microbalance, Microporous Mesoporous Mater., 47(2001), No. 2-3, p. 157. doi: 10.1016/S1387-1811(01)00372-9
|
[81] |
S.N. Sousan, A. Gray, C. Zuidema, L. Stebounova, G. Thomas, K. Koehler, and T. Peters, Sensor selection to improve estimates of particulate matter concentration from a low-cost network, Sensors, 18(2018), No. 9, art. No. 3008. doi: 10.3390/s18093008
|
[82] |
Y. Jiang, X. Zhu, C. Chen, Y. Ge, W. Wang, Z. Zhao, J. Cai, and H. Kan, On-field and data calibration of low-cost sensor for fine partices exposure assessment, Ecotoxicology and environmental safety, 211(2021), p. 111958. doi: 10.1016/j.ecoenv.2021.111958
|
[83] |
L. Spinelle, M. Gerboles, M.G. Villani, M. Aleixandre, and F. Bonavitacola, Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide, Sens. Actuators B, 215(2015), p. 249. doi: 10.1016/j.snb.2015.03.031
|
[84] |
X.L. Qin, L.J. Hou, J. Gao, and S.C. Si, The evaluation and optimization of calibration methods for low-cost particulate matter sensors: Inter-comparison between fixed and mobile methods, Sci. Total. Environ., 715(2020), art. No. 136791. doi: 10.1016/j.scitotenv.2020.136791
|
[85] |
T.S. Zheng, M.H. Bergin, K.K. Johnson, S.N. Tripathi, S. Shirodkar, M.S. Landis, R. Sutaria, and D.E. Carlson, Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmos. Meas. Tech., 11(2018), No. 8, p. 4823. doi: 10.5194/amt-11-4823-2018
|
[86] |
T. Watkins, DRAFT Roadmap for Next Generation Air Monitoring, United States Environmental Protection Agency, 2013 [2020-06-12]. https://www.epa.gov/sites/default/files/2014-09/documents/roadmap-20130308.pdf
|
[87] |
L. Spinelle, M. Aleixandre, and M. Gerboles, Protocol of Evaluation and Calibration of Low-Cost Gas Sensors for the Monitoring of Air Pollution, Publication of the European Union, Luxemburg, 2013.
|
[88] |
P. Thunis, A. Pederzoli, and D. Pernigotti, Performance criteria to evaluate air quality modeling applications, Atmos. Environ., 59(2012), p. 476. doi: 10.1016/j.atmosenv.2012.05.043
|
[89] |
I.M. Spitzer, D.R. Marr, and M.N. Glauser, Impact of manikin motion on particle transport in the breathing zone, J. Aerosol Sci., 41(2010), No. 4, p. 373. doi: 10.1016/j.jaerosci.2010.01.009
|
[90] |
M.D. Taylor, Calibration and Characterization of Low-Cost Fine Particulate Monitors and their Effect on Individual Empowerment [Dissertation], Carnegie Mellon University, Pittsburgh, PA, 2016.
|