Xiaoshuang Guo, Zhengyao Li, Jicai Han, Dong Yang, and Tichang Sun, Petroleum coke as reductant in co-reduction of low-grade laterite ore and red mud to prepare ferronickel: Reductant and reduction effects, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp.455-463. https://dx.doi.org/10.1007/s12613-021-2389-9
Cite this article as: Xiaoshuang Guo, Zhengyao Li, Jicai Han, Dong Yang, and Tichang Sun, Petroleum coke as reductant in co-reduction of low-grade laterite ore and red mud to prepare ferronickel: Reductant and reduction effects, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp.455-463. https://dx.doi.org/10.1007/s12613-021-2389-9

Petroleum coke as reductant in co-reduction of low-grade laterite ore and red mud to prepare ferronickel: Reductant and reduction effects

  • Petroleum coke is industrial solid wastes and its disposal and storage has been a great challenge to the environment. In this study, petroleum coke was utilized as a novel co-reduction reductant of low-grade laterite ore and red mud. A ferronickel product of 1.98wt% nickel and 87.98wt% iron was obtained with 20wt% petroleum coke, when the roasting temperature and time was 1250°C and 60 min, respectively. The corresponding recoveries of nickel and total iron were 99.54wt% and 95.59wt%, respectively. Scanning electron microscopy–energy dispersive spectrometry (SEM–EDS) analysis showed metallic nickel and iron mainly existed in the form of ferronickel particles which distributed uniformly at a size of approximately 30 μm with high purity. This study demonstrated that petroleum coke is a promising reductant in the co-reduction of laterite ore and red mud. Compared to other alternatives, petroleum coke is advantageous with reduced production cost and high applicability in anthracite-deficient areas.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return