Qinli Zhang, Hao Wu, Yan Feng, Daolin Wang, Huaibin Su,  and Xiaoshuang Li, Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 225-235. https://doi.org/10.1007/s12613-021-2397-9
Cite this article as:
Qinli Zhang, Hao Wu, Yan Feng, Daolin Wang, Huaibin Su,  and Xiaoshuang Li, Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 225-235. https://doi.org/10.1007/s12613-021-2397-9
Research Article

Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate

+ Author Affiliations
  • Corresponding author:

    Yan Feng    E-mail: yan.feng@csu.edu.cn

  • Received: 26 October 2021Revised: 21 December 2021Accepted: 21 December 2021Available online: 25 December 2021
  • Rod milling sand (RMS)—a coarse sand aggregate—was recycled for cemented paste backfill (CPB) for the underground mined area at the Jinchuan nickel deposit, named rod milling sand-based cemented paste backfill (RCPB). The adverse effects of coarse particles on the transportation of CPB slurry through pipelines to underground stopes resulting in weakening of the stability of the backfill system are well known. Therefore, sulfonated naphthalene formaldehyde (SNF) condensate was used for the performance improvement of RCPB. The synergistic effect of solid content (SC), lime-to-sand ratio, and SNF dosage on the rheological and physicomechanical properties, including slump, yield stress, bleeding rate, uniaxial compressive strength (UCS), as well as mechanism analysis of RCPB, have been explored. The results indicate that the effect of SNF on RCPB performance is related to the SNF dosage, lime-to-sand ratio, and SC. The slump of fresh RCPB with 0.1wt%–0.5wt% SNF increased by 2.6%–26.2%, whereas the yield stress reduced by 4.1%–50.3%, indicating better workability and improved cohesiveness of the mix. The bleeding rate of fresh RCPB decreased first and then rose with the increase of SNF dosage, and the peak decrease was 67.67%. UCS of RCPB first increased and then decreased with the increase of SNF dosage. At the optimal SNF addition ratio of 0.3wt%, the UCS of RCPB curing for 7, 14 and, 28 d ages increased by 31.5%, 28.4%, and 29.5%, respectively. The beneficial effects of SNF in enhancing the early UCS of RCPB have been corroborated. However, the later UCS increases at a slower rate. The research findings may guide the design and preparation of RCPB with adequate performance for practical applications.
  • loading
  • [1]
    L. Yang, E. Yilmaz, J.W. Li, H. Liu, and H.Q. Jiang, Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents, Constr. Build. Mater., 187(2018), p. 290. doi: 10.1016/j.conbuildmat.2018.07.155
    [2]
    Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B Zhou and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
    [3]
    Y.Y. Tan, E. Davide, Y.C. Zhou, W.D. Song, and X. Meng, Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 140. doi: 10.1007/s12613-019-1878-6
    [4]
    Q.L. Zhang, B.Y. Zhang, Q.S. Chen, D.L. Wang, and X. Gao, Safety analysis of synergetic operation of backfilling the open pit using tailings and excavating the ore deposit underground, Minerals, 11(2021), No. 8, art. No. 818. doi: 10.3390/min11080818
    [5]
    M. Sheshpari, A review of underground mine backfilling methods with emphasis on cemented paste backfill, Electron. J. Geotech. Eng., 20(2015), No. 13, p. 5183.
    [6]
    H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater, 27(2020), No. 1, p. 10. doi: 10.1007/s12613-019-1865-y
    [7]
    Y. Liu, H. Li, K. Wang, H.F. Wu, and B.Q. Cui, Effects of accelerator-water reducer admixture on performance of cemented paste backfill, Constr. Build. Mater., 242(2020), art. No. 118187. doi: 10.1016/j.conbuildmat.2020.118187
    [8]
    S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Clean. Prod., 247(2020), art. No. 119590. doi: 10.1016/j.jclepro.2019.119590
    [9]
    Q.S. Chen, Y.B. Tao, Y. Feng, Q.L. Zhang, and Y.K. Liu, Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill, J. Environ. Manage., 290(2021), art. No. 112608. doi: 10.1016/j.jenvman.2021.112608
    [10]
    F.F. Jiang, H. Zhou, J. Sheng, Y.Y. Kou, and X.D. Li, Effects of temperature and age on physico-mechanical properties of cemented gravel sand backfills, J. Cent. South Univ., 27(2020), No. 10, p. 2999. doi: 10.1007/s11771-020-4524-6
    [11]
    Z.Q. Yang, Key technology research on the efficient exploitation and comprehensive utilization of resources in the deep Jinchuan nickel deposit, Engineering, 3(2017), No. 4, p. 559. doi: 10.1016/J.ENG.2017.04.021
    [12]
    S. Wang, X.P. Song, X.J. Wang, Q.S. Chen, J.C. Qin, and Y.X. Ke, Influence of coarse tailings on flocculation settlement, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1065. doi: 10.1007/s12613-019-1948-9
    [13]
    C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
    [14]
    D. Ouattara, A. Yahia, M. Mbonimpa, and T. Belem, Effects of superplasticizer on rheological properties of cemented paste backfills, Int. J. Miner. Process., 161(2017), p. 28. doi: 10.1016/j.minpro.2017.02.003
    [15]
    Y.H. Wu, Q.Q. Li, G.X. Li, S.Y. Tang, M.D. Niu, and Y.F. Wu, Effect of naphthalene-based superplasticizer and polycarboxylic acid superplasticizer on the properties of sulfoaluminate cement, Materials (Basel), 14(2021), No. 3, art. No. 662.
    [16]
    N.S. Msinjili, W. Schmidt, B. Mota, S. Leinitz, H.C. Kühne, and A. Rogge, The effect of superplasticizers on rheology and early hydration kinetics of rice husk ash-blended cementitious systems, Constr. Build. Mater., 150(2017), p. 511. doi: 10.1016/j.conbuildmat.2017.05.197
    [17]
    M.B.C. Mangane, R. Argane, R. Trauchessec, A. Lecomte, and M. Benzaazoua, Influence of superplasticizers on mechanical properties and workability of cemented paste backfill, Miner. Eng., 116(2018), p. 3. doi: 10.1016/j.mineng.2017.11.006
    [18]
    B. Koohestani, A.K. Darban, and P. Mokhtari, A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill, Constr. Build. Mater., 173(2018), p. 180. doi: 10.1016/j.conbuildmat.2018.03.265
    [19]
    C.B. Cheah, W.K. Chow, C.W. Oo, and K.H. Leow, The influence of type and combination of polycarboxylate ether superplasticizer on the mechanical properties and microstructure of slag-silica fume ternary blended self-consolidating concrete, J. Build. Eng., 31(2020), art. No. 101412. doi: 10.1016/j.jobe.2020.101412
    [20]
    S.H. Lv, H.D. Ding, T. Sun, and J.J. Liu, Effect of naphthalene superplasticizer/graphene oxide composite on microstructure and mechanical properties of hardened cement paste, J. Shaanxi Univ. Sci. Technol. Nat. Sci. Ed., 32(2014), No. 5, p. 42.
    [21]
    G. Tiberti, A. Conforti, and G.A. Plizzari, Precast segments under TBM hydraulic jacks: Experimental investigation on the local splitting behavior, Tunnelling Underground Space Technol., 50(2015), p. 438. doi: 10.1016/j.tust.2015.08.013
    [22]
    F.L. Wang, F.G. Yang, Z.P. Yuan, and S.J. Yang, Effects of fly ash and chemical admixtures on the rheological properties of high-concentration full-tailing filling slurry, Adv. Civ. Eng., 2020(2020), art. No. 8872206. doi: 10.1155/2020/8872206
    [23]
    C.A. Anagnostopoulos, Effect of different superplasticisers on the physical and mechanical properties of cement grouts, Constr. Build. Mater., 50(2014), p. 162. doi: 10.1016/j.conbuildmat.2013.09.050
    [24]
    S. Han, P.Y. Yan, and X.M. Kong, Study on the compatibility of cement-superplasticizer system based on the amount of free solution, Sci. China Technol. Sci., 54(2011), No. 1, p. 183. doi: 10.1007/s11431-010-4174-2
    [25]
    S. Haruna and M. Fall, Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer, Powder Technol., 360(2020), p. 731. doi: 10.1016/j.powtec.2019.09.025
    [26]
    Y. Nakajima and K. Yamada, The effect of the kind of calcium sulfate in cements on the dispersing ability of poly β-naphthalene sulfonate condensate superplasticizer, Cem. Concr. Res., 34(2004), No. 5, p. 839. doi: 10.1016/j.cemconres.2003.09.022
    [27]
    E. Janowska-Renkas, Impact of sulphate ions content on performance of maleic and acrylic superplasticizers in cement paste, Materials (Basel), 14(2021), No. 10, art. No. 2683.
    [28]
    J. Ren, Superplasticiser for NaOH-activated Slag: Competition and Instability between Superplasticiser and Alkali-activator [Dissertation], University College London, London, 2016.
    [29]
    H. Zhao, M. Deng, and M.S. Tang, The molecular structures and the application properties of sulfonated acetone-formaldehyde superplasticizers at different synthetic methods, Constr. Build. Mater., 241(2020), art. No. 118051. doi: 10.1016/j.conbuildmat.2020.118051
    [30]
    W.X. Cao, W. Yi, S.H. Yin, J.H. Peng, and J. Li, A novel low-density thermal insulation gypsum reinforced with superplasticizers, Constr. Build. Mater., 278(2021), art. No. 122421. doi: 10.1016/j.conbuildmat.2021.122421
    [31]
    M. Garg, A. Pundir, and R. Singh, Modifications in water resistance and engineering properties of β-calcium sulphate hemihydrate plaster-superplasticizer blends, Mater. Struct., 49(2016), No. 8, p. 3253. doi: 10.1617/s11527-015-0717-0
    [32]
    National Standards Administration Committee of China, GB 8076–2008: Concrete Admixtures, China Standard Press, Beijing, 2009.
    [33]
    Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD), JGJ/T70–2009: Standard for Test Method of Performance on Building Mortar, China Building Industry Press, Beijing, 2009.
    [34]
    S.X. Hu, F.H. Jiang, J.G. Li, C.N. Wu, K. Liu, and Y.M. Chen, Understanding the adsorption behaviors of naphthalene sulfonate formaldehyde in coal water slurry, Colloids Surf. A, 628(2021), art. No. 127245. doi: 10.1016/j.colsurfa.2021.127245
    [35]
    L. Huynh and P. Jenkins, A rheological and electrokinetic investigation of the interactions between pigment particles dispersed in aqueous solutions of short-chain phosphates, Colloids Surf. A, 190(2001), No. 1-2, p. 35. doi: 10.1016/S0927-7757(01)00663-X
    [36]
    G. Zhang, G.X. Li, and Y.C. Li, Effects of superplasticizers and retarders on the fluidity and strength of sulphoaluminate cement, Constr. Build. Mater., 126(2016), p. 44. doi: 10.1016/j.conbuildmat.2016.09.019
    [37]
    J. Zhang, S.C. Li, Z.F. Li, C. Liu, Y.F. Gao, and Y.H. Qi, Properties of red mud blended with magnesium phosphate cement paste: Feasibility of grouting material preparation, Constr. Build. Mater., 260(2020), art. No. 119704. doi: 10.1016/j.conbuildmat.2020.119704
    [38]
    National Standards Administration Committee of China, GB/T 2419–2005: Test Method for Fluidity of Cement Mortar, China Standard Press, Beijing, 2005.
    [39]
    A.X. Wu, Y. Wang, and H.J. Wang, Estimation model for yield stress of fresh uncemented thickened tailings: Coupled effects of true solid density, bulk density, and solid concentration, Int. J. Miner. Process., 143(2015), p. 117. doi: 10.1016/j.minpro.2015.09.010
    [40]
    D. Simon and M. Grabinsky, Apparent yield stress measurement in cemented paste backfill, Int. J. Min. Reclam. Environ., 27(2013), No. 4, p. 231. doi: 10.1080/17480930.2012.680754
    [41]
    Y. Qian and S. Kawashima, Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy, Cem. Concr. Compos., 86(2018), p. 288. doi: 10.1016/j.cemconcomp.2017.11.019
    [42]
    ASTM International, ASTM D2166/D2166M–16: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM international, West Conshohocken, 2016.
    [43]
    X.F. Cui, G.M. Liu, C.L. Wang, and Y.D. Qi, Effects of PET fibers on pumpability, shootability, and mechanical properties of wet-mix shotcrete, Adv. Civ. Eng., 2019(2019), art. No. 2756489. doi: 10.1155/2019/2756489
    [44]
    X.J. Deng, J.X. Zhang, B. Klein, N. Zhou, and B. deWit, Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill, Int. J. Miner. Process., 168(2017), p. 116. doi: 10.1016/j.minpro.2017.09.019
    [45]
    J.P. Qiu, L. Yang, X.G. Sun, J. Xing, and S.B. Li, Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill, Minerals, 7(2017), No. 4, art. No. 58. doi: 10.3390/min7040058
    [46]
    J.A. Lewis, H. Matsuyama, G. Kirby, S. Morissette, and J.F. Young, Polyelectrolyte effects on the rheological properties of concentrated cement suspensions, J. Am. Ceram. Soc., 83(2004), No. 8, p. 1905. doi: 10.1111/j.1151-2916.2000.tb01489.x
    [47]
    J.W. Peng, D.H. Deng, H. Huang, Q. Yuan, and J.G. Peng, Influence of superplasticizer on the rheology of fresh cement asphalt paste, Case Stud. Constr. Mater., 3(2015), p. 9. doi: 10.1016/j.cscm.2015.05.002
    [48]
    J.F. Zhu, G.H. Zhang, Z. Miao, and T. Shang, Synthesis and performance of a comblike amphoteric polycarboxylate dispersant for coal–water slurry, Colloids Surf. A, 412(2012), p. 101. doi: 10.1016/j.colsurfa.2012.07.023
    [49]
    X.C. Wang, S.C. Li, A.N. Zhou, R.T. Liu, S.L. Duan, and M. Wang, Influence of the bleeding characteristic on density and rheology in cement slurry, Constr. Build. Mater., 269(2021), art. No. 121316. doi: 10.1016/j.conbuildmat.2020.121316
    [50]
    Y. Peng, R.A. Lauten, K. Reknes, and S. Jacobsen, Bleeding and sedimentation of cement paste measured by hydrostatic pressure and Turbiscan, Cem. Concr. Compos., 76(2017), p. 25. doi: 10.1016/j.cemconcomp.2016.11.013
    [51]
    N. Massoussi, E. Keita, and N. Roussel, The heterogeneous nature of bleeding in cement pastes, Cem. Concr. Res., 95(2017), p. 108. doi: 10.1016/j.cemconres.2017.02.012
    [52]
    J.R. Zheng, Y.L. Zhu, and Z.B. Zhao, Utilization of limestone powder and water-reducing admixture in cemented paste backfill of coarse copper mine tailings, Constr. Build. Mater., 124(2016), p. 31. doi: 10.1016/j.conbuildmat.2016.07.055
    [53]
    K. Klein and D. Simon, Effect of specimen composition on the strength development in cemented paste backfill, Can. Geotech. J., 43(2006), No. 3, p. 310. doi: 10.1139/t06-005
    [54]
    L. Cui and M. Fall, Multiphysics model for consolidation behavior of cemented paste backfill, Int. J. Geomech., 17(2017), No. 3, art. No. 04016077. doi: 10.1061/(ASCE)GM.1943-5622.0000743
    [55]
    H.Z. Jiao, Y.C. Wu, H. Wang, X.M. Chen, Z. Li, Y.F. Wang, B.Y. Zhang, and J.H. Liu, Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener, Miner. Eng., 173(2021), art. No. 107043. doi: 10.1016/j.mineng.2021.107043
    [56]
    Y.F. Guo, B.G. Ma, Z.Z. Zhi, H.B. Tan, M.Y. Liu, S.W. Jian, and Y.L. Guo, Effect of polyacrylic acid emulsion on fluidity of cement paste, Colloids Surf. A, 535(2017), p. 139. doi: 10.1016/j.colsurfa.2017.09.039
    [57]
    H.Y. Lu, X.F. Li, C.Q. Zhang, J.Y. Chen, L.G. Ma, W.H. Li, and D.P. Xu, Experiments and molecular dynamics simulations on the adsorption of naphthalenesulfonic formaldehyde condensates at the coal–water interface, Fuel, 264(2020), art. No. 116838. doi: 10.1016/j.fuel.2019.116838
    [58]
    S.S. Qian, Y. Yao, Z.M. Wang, S.P. Cui, X. Liu, H.D. Jiang, Z.L. Guo, G.H. Lai, Q. Xu, and J.N. Guan, Synthesis, characterization and working mechanism of a novel polycarboxylate superplasticizer for concrete possessing reduced viscosity, Constr. Build. Mater., 169(2018), p. 452. doi: 10.1016/j.conbuildmat.2018.02.212
    [59]
    K.L. Wang, Y.L. Ding, Z.C. Wang, and B. Du, Development of aromatic water reducer for concrete, J. Shandong Inst. Build. Mater., 18(2004), No. 3, p. 205.
    [60]
    X.M. Kong, Y.R. Zhang, and S.S. Hou, Study on the rheological properties of Portland cement pastes with polycarboxylate superplasticizers, Rheol. Acta, 52(2013), No. 7, p. 707. doi: 10.1007/s00397-013-0713-7
    [61]
    E. Knapen, O. Cizer, K. van Balen, and D. van Gemert, Effect of free water removal from early-age hydrated cement pastes on thermal analysis, Constr. Build. Mater., 23(2009), No. 11, p. 3431. doi: 10.1016/j.conbuildmat.2009.06.004
    [62]
    J.Z. Li, Y. Zhang, and X.M. Cui, The influence of free water content on dielectric properties of alkali active slag cement paste, J. Wuhan Univ. Technol. Mater Sci. Ed., 22(2007), No. 4, p. 774. doi: 10.1007/s11595-006-4774-7
    [63]
    S.X. Hu, J.G. Li, X. Yang, Y.M. Chen, F.H. Li, J.F. Wang, C.N. Wu, L. Weng, and K. Liu, Improvement on slurry ability and combustion dynamics of low quality coals with ultra-high ash content, Chem. Eng. Res. Des., 156(2020), p. 391. doi: 10.1016/j.cherd.2020.02.011
    [64]
    A. Pundir, M. Garg, and R. Singh, Evaluation of properties of gypsum plaster-superplasticizer blends of improved performance, J. Build. Eng., 4(2015), p. 223. doi: 10.1016/j.jobe.2015.09.012
    [65]
    E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater., 75(2015), p. 99. doi: 10.1016/j.conbuildmat.2014.11.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(916) PDF Downloads(58) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return