Kevin Huang, Mixed ion and electron transport theory and application in solid oxide conductors, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 870-875. https://doi.org/10.1007/s12613-021-2401-4
Cite this article as:
Kevin Huang, Mixed ion and electron transport theory and application in solid oxide conductors, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 870-875. https://doi.org/10.1007/s12613-021-2401-4
Invited Review

Mixed ion and electron transport theory and application in solid oxide conductors

+ Author Affiliations
  • Corresponding author:

    Kevin Huang    E-mail: huang46@cec.sc.edu

  • Received: 26 October 2021Revised: 30 November 2021Accepted: 20 December 2021Available online: 25 December 2021
  • Mixed ions and electron conductors (MIECs) are an important family of electrocatalysts for electrochemical devices, such as reversible solid oxide cells, rechargeable metal–air batteries, and oxygen transport membranes. Concurrent ionic and electronic transports in these materials play a key role in electrocatalytic activity. An in-depth fundamental understanding of the transport phenomena is critically needed to develop better MIECs. In this brief review, we introduced generic ionic and electronic transport theory based on irreversible thermodynamics and applied it to practical oxide-based materials with oxygen vacancies and electrons/holes as the predominant defects. Two oxide systems, namely CeO2-based and LaCrO3-based materials, are selected as case studies to illustrate the utility of the transport theory in predicting oxygen partial pressure distribution across MIECs, electrochemical electronic/ionic leakage currents, and the effects of external load current on the leakage currents.
  • loading
  • [1]
    S.D. Ebbesen, S.H. Jensen, A. Hauch, and M.B. Mogensen, High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells, Chem. Rev., 114(2014), No. 21, p. 10697. doi: 10.1021/cr5000865
    [2]
    C.L. Wang, Y.C. Yu, J.J. Niu, Y.X. Liu, D. Bridges, X.Q. Liu, J. Pooran, Y.F. Zhang, and A.M. Hu, Recent progress of metal–air batteries—A mini review, Appl. Sci., 9(2019), No. 14, art. No. 2787. doi: 10.3390/app9142787
    [3]
    Q.Y. Jiang, S. Faraji, D.A. Slade, and S.M. Stagg-Williams, A review of mixed ionic and electronic conducting ceramic membranes as oxygen sources for high-temperature reactors, Membr. Sci. Technol., 14(2011), p. 235.
    [4]
    L. Heyne, Electrochemistry of mixed ionic-electronic conductors, [in] S. Geller, ed., Solid Electrolytes, Springer-Verlag Berlin Heidelberg, New York, 1977, p. 169..
    [5]
    C. Wagner, Beitrag zur theorie des anlaufvorgangs, Z. Phys. Chem., 21B(1933), No. 1, p. 25. doi: 10.1515/zpch-1933-2105
    [6]
    S.R. De Groot, Thermodynamics of Irreversible Processes, North-Holland Publication Company, Amsterdam, 1951.
    [7]
    H. Rickert, Electrochemistry of Solids—An Introduction, Springer-Verlag Berlin Heidelberg, New York, 1982, p. 79.
    [8]
    J. Maier, Physical Chemistry of Ionic Materials: Ions and Electrons in Solids, John Wiley & Sons Ltd, Chichester, 2004, p. 294.
    [9]
    G.E. Murch, The haven ratio in fast ionic conductors, Solid State Ionics, 7(1982), No. 3, p. 177. doi: 10.1016/0167-2738(82)90050-9
    [10]
    N.S. Choudhury and J.W. Patterson, Performance characteristics of solid electrolytes under steady-state conditions, J. Electrochem. Soc., 118(1971), No. 9, art. No. 1398. doi: 10.1149/1.2408337
    [11]
    I. Riess, Current–voltage relation and charge distribution in mixed ionic electronic solid conductors, J. Phys. Chem. Solids, 47(1986), No. 2, p. 129. doi: 10.1016/0022-3697(86)90121-6
    [12]
    A. Mineshige, T. Yasui, N. Ohmura, M. Kobune, S. Fujii, M. Inaba, and Z. Ogumi, Oxygen chemical potential and mixed conduction in doped ceria under influence of oxygen partial pressure gradient, Solid State Ionics, 152-153(2002), p. 493. doi: 10.1016/S0167-2738(02)00378-8
    [13]
    B.C.H. Steele, Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C, Solid State Ionics, 129(2000), No. 1-4, p. 95. doi: 10.1016/S0167-2738(99)00319-7
    [14]
    B. Dalslet, P. Blennow, P.V. Hendriksen, N. Bonanos, D. Lybye, and M. Mogensen, Assessment of doped ceria as electrolyte, J. Solid State Electrochem., 10(2006), No. 8, p. 547. doi: 10.1007/s10008-006-0135-x
    [15]
    I. Yasuda and T. Hikita, Electrical conductivity and defect structure of calcium-doped lanthanum chromites, J. Electrochem. Soc., 140(1993), No. 6, p. 1699. doi: 10.1149/1.2221626
    [16]
    I. Yasuda and M. Hishinuma, Electrochemical properties of doped lanthanum chromites as interconnectors for solid oxide fuel cells, J. Electrochem. Soc., 143(1996), No. 5, p. 1583. doi: 10.1149/1.1836683
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Share Article

    Article Metrics

    Article Views(1995) PDF Downloads(59) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return