Bao Zhang, Jiusan Xiao, Shuqiang Jiao,  and Hongmin Zhu, Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 787-795. https://doi.org/10.1007/s12613-022-2421-8
Cite this article as:
Bao Zhang, Jiusan Xiao, Shuqiang Jiao,  and Hongmin Zhu, Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 787-795. https://doi.org/10.1007/s12613-022-2421-8
Research Article

Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy

+ Author Affiliations
  • Corresponding authors:

    Jiusan Xiao    E-mail: jsxiao@ustb.edu.cn

    Hongmin Zhu    E-mail: hzhu@ustb.edu.cn

  • Received: 30 September 2021Revised: 12 January 2022Accepted: 17 January 2022Available online: 19 January 2022
  • Normal titanium oxycarbide exhibits an excellent electrical conductivity and a high carrier concentration of approximately 1021 cm−3; however, the low Seebeck coefficient limits the thermoelectric application. In this study, first-principle calculations demonstrate that the metal vacancy of titanium oxycarbide weakens the density of state passing through the valence band at the Fermi level, impairing the carrier concentration and enhancing carrier mobility. Thermodynamic analysis justifies the formation of titanium oxycarbide with metal vacancy through solid-state reaction. Transmission electron microscopic images demonstrate the segregation of metal vacancy based on the observation of the defect-rich and single-crystal face-centered cubic regions. Metal vacancy triggers the formation of vacancy-rich and single-crystal face-centered cubic regions. The aggregation of metal vacancy leads to the formation of the vacancy-rich region and other regions with a semi-coherent interface, suppressing the carrier concentration from 1.71 × 1021 to 4.5 × 1020 cm−3 and resulting in the Seebeck coefficient from −11 μV/K of TiC0.5O0.5 to −64 μV/K at 1073 K. Meanwhile, vacancies accelerate electron migration from 1.65 to 4.22 cm−2·V−1·s−1, maintaining high conductivity. The figure of merit (ZT) increases more than five orders of magnitude via the introduction of metal vacancy, with the maximum figure of 2.11 × 10−2 at 1073 K. These results indicate the potential thermoelectric application of metal-oxycarbide materials through vacancy engineering.
  • loading
  • [1]
    X.L. Shi, J. Zou, and Z.G. Chen, Advanced thermoelectric design: From materials and structures to devices, Chem. Rev., 120(2020), No. 15, p. 7399. doi: 10.1021/acs.chemrev.0c00026
    [2]
    H.T. Su, F.B. Zhou, B.B. Shi, H.N. Qi, and J.C. Deng, Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 275. doi: 10.1007/s12613-019-1947-x
    [3]
    S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N.K. Singh, A. Soni, J. He, U.V. Waghmare, and K. Biswas, Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2, Science, 371(2021), No. 6530, p. 722. doi: 10.1126/science.abb3517
    [4]
    Z. Ma, J.T. Wei, P.S. Song, M.L. Zhang, L.L. Yang, J. Ma, W. Liu, F.H. Yang, and X.D. Wang, Review of experimental approaches for improving ZT of thermoelectric materials, Mater. Sci. Semicond. Process., 121(2021), art. No. 105303. doi: 10.1016/j.mssp.2020.105303
    [5]
    X. Zhang and L.D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity, J. Materiomics, 1(2015), No. 2, p. 92. doi: 10.1016/j.jmat.2015.01.001
    [6]
    G.J. Tan, L.D. Zhao, and M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev., 116(2016), No. 19, p. 12123. doi: 10.1021/acs.chemrev.6b00255
    [7]
    R. Prasad and S.D. Bhame, Review on texturization effects in thermoelectric oxides, Mater. Renewable Sustainable Energy, 9(2020), art. No. 3. doi: 10.1007/s40243-019-0163-y
    [8]
    A. Nag and V. Shubha, Oxide thermoelectric materials: A structure–property relationship, J. Electron. Mater., 43(2014), No. 4, p. 962. doi: 10.1007/s11664-014-3024-6
    [9]
    Y. Gu, X.L. Shi, L. Pan, W.D. Liu, Q. Sun, X. Tang, L.Z. Kou, Q.F. Liu, Y.F. Wang, and Z.G. Chen, Rational electronic and structural designs advance BiCuSeO thermoelectrics, Adv. Funct. Mater., 31(2021), No. 25, art. No. 2101289. doi: 10.1002/adfm.202101289
    [10]
    H.Q. Liu, H.A. Ma, T.C. Su, Y.W. Zhang, B. Sun, B.W. Liu, L.J. Kong, B.M. Liu, and X.P. Jia, High-thermoelectric performance of TiO2−x fabricated under high pressure at high temperatures, J. Materiomics, 3(2017), No. 4, p. 286. doi: 10.1016/j.jmat.2017.06.002
    [11]
    G.Y. Ji, L.J. Chang, H.A. Ma, B.M. Liu, Q. Chen, Y. Wang, X.J. Li, J.N. Wang, Y.W. Zhang, and X.P. Jia, Synthesis and characterization of Al doped non-stoichiometric ratio titanium oxide at high temperature and pressure, J. Alloys Compd., 850(2021), art. No. 156623. doi: 10.1016/j.jallcom.2020.156623
    [12]
    D.T. Morelli, Thermal conductivity and thermoelectric power of titanium carbide single crystals, Phys. Rev. B Condens. Matter, 44(1991), No. 11, p. 5453. doi: 10.1103/PhysRevB.44.5453
    [13]
    L.W. Zhao, W.B. Qiu, Y.X. Sun, L.Q. Chen, H. Deng, L. Yang, X.M. Shi, and J. Tang, Enhanced thermoelectric performance of Bi0.3Sb1.7Te3 based alloys by dispersing TiC ceramic nanoparticles, J. Alloys Compd., 863(2021), art. No. 158376. doi: 10.1016/j.jallcom.2020.158376
    [14]
    L.H. Huang, J.C. Wang, X.B. Mo, X.B. Lei, S.D. Ma, C. Wang, and Q.Y. Zhang, Improving the thermoelectric properties of the half-Heusler compound VCoSb by vanadium vacancy, Materials, 12(2019), No. 10, art. No. 1637. doi: 10.3390/ma12101637
    [15]
    G. Li, J.Y. Yang, Y. Xiao, L.W. Fu, Y.B. Luo, D. Zhang, M. Liu, W.X. Li, and M.Y. Zhang, Effect of TiC nanoinclusions on thermoelectric and mechanical performance of polycrystalline In4Se2.65, J. Am. Ceram. Soc., 98(2015), No. 12, p. 3813. doi: 10.1111/jace.13773
    [16]
    Y. Liu, C.L. Ou, J.G. Hou, and H.M. Zhu, Effect of coated TiO2 nano-particle on thermoelectric performance of TiC0.5O0.5 ceramics, J. Alloys Compd., 531(2012), p. 5. doi: 10.1016/j.jallcom.2012.02.176
    [17]
    C.L. Ou, J.G. Hou, T.R. Wei, B. Jiang, S.Q. Jiao, J.F. Li, and H.M. Zhu, High thermoelectric performance of all-oxide heterostructures with carrier double-barrier filtering effect, NPG Asia Mater., 7(2015), No. 5, art. No. e182. doi: 10.1038/am.2015.36
    [18]
    K.C. Chang and C.J. Liu, Disorder effect and thermoelectric properties of Bi1−xCaxCu1−ySeO with Cu vacancy, J. Alloys Compd., 896(2022), art. No. 163033. doi: 10.1016/j.jallcom.2021.163033
    [19]
    W. Saito, K. Hayashi, J.F. Dong, J.F. Li, and Y. Miyazaki, Control of the thermoelectric properties of Mg2Sn single crystals via point-defect engineering, Sci. Rep., 2020(2020), art. No. 10. doi: 10.1038/s41598-020-58998-1
    [20]
    Y.B. Zhu, Z.J. Han, F. Jiang, E.T. Dong, B.P. Zhang, W.Q. Zhang, and W.S. Liu, Thermodynamic criterions of the thermoelectric performance enhancement in Mg2Sn through the self-compensation vacancy, Mater. Today Phys., 16(2021), art. No. 100327. doi: 10.1016/j.mtphys.2020.100327
    [21]
    Y. Wang, W.D. Liu, X.L. Shi, M. Hong, L.J. Wang, M. Li, H. Wang, J. Zou, and Z.G. Chen, Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction, Chem. Eng. J., 391(2020), art. No. 123513. doi: 10.1016/j.cej.2019.123513
    [22]
    B. Jiang, N. Hou, S.Y. Huang, G.G. Zhou, J.G. Hou, Z.M. Cao, and H.M. Zhu, Structural studies of TiC1−xOx solid solution by Rietveld refinement and first-principles calculations, J. Solid State Chem., 204(2013), p. 1. doi: 10.1016/j.jssc.2013.05.009
    [23]
    B. Zhang, J.S. Xiao, S.Q. Jiao, and H.M. Zhu, A novel titanium oxycarbide phase with metal-vacancy (Ti1−yCxO1−x): Structural and thermodynamic basis, Ceram. Int., 47(2021), No. 11, p. 16324. doi: 10.1016/j.ceramint.2021.02.212
    [24]
    H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
    [25]
    J.P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B, 33(1986), No. 12, p. 8800. doi: 10.1103/PhysRevB.33.8800
    [26]
    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
    [27]
    L. Pan, Y.D. Lang, L. Zhao, D. Berardan, E. Amzallag, C. Xu, Y.F. Gu, C.C. Chen, L.D. Zhao, X.D. Shen, Y.N. Lyu, C.H. Lu, and Y.F. Wang, Realization of n-type and enhanced thermoelectric performance of p-type BiCuSeO by controlled iron incorporation, J. Mater. Chem. A, 6(2018), No. 27, p. 13340. doi: 10.1039/C8TA03521K
    [28]
    S. Conze, I. Veremchuk, M. Reibold, B. Matthey, A. Michaelis, Y. Grin, and I. Kinski, Magnéli phases Ti4O7 and Ti8O15 and their carbon nanocomposites via the thermal decomposition-precursor route, J. Solid State Chem., 229(2015), p. 235. doi: 10.1016/j.jssc.2015.04.037
    [29]
    Z. Jiang and W.F. Shangguan, Rational removal of stabilizer-ligands from platinum nanoparticles supported on photocatalysts by self-photocatalysis degradation, Catal. Today, 242(2015), p. 372. doi: 10.1016/j.cattod.2014.07.037
    [30]
    B.Q. Xu, D. Zhao, H.Y. Sohn, Y. Mohassab, B. Yang, Y.P. Lan, and J. Yang, Flash synthesis of Magnéli phase (TinO2n-1) nanoparticles by thermal plasma treatment of H2TiO3, Ceram. Int., 44(2018), No. 4, p. 3929. doi: 10.1016/j.ceramint.2017.11.184
    [31]
    Y. Wang, P. Miska, D. Pilloud, D. Horwat, F. Mücklich, and J.F. Pierson, Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing, J. Appl. Phys., 115(2014), No. 7, art. No. 073505. doi: 10.1063/1.4865957
    [32]
    T. Koketsu, J.W. Ma, B.J. Morgan, M. Body, C. Legein, W. Dachraoui, M. Giannini, A. Demortière, M. Salanne, F. Dardoize, H. Groult, O.J. Borkiewicz, K.W. Chapman, P. Strasser, and D. Dambournet, Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2, Nat. Mater., 16(2017), No. 11, p. 1142. doi: 10.1038/nmat4976
    [33]
    H.Q. Liu, H.A. Ma, L.X. Chen, F. Wang, B.M. Liu, J.X. Chen, G.Y. Ji, Y.W. Zhang, and X.P. Jia, Pressure-induced thermoelectric properties of strongly reduced titanium oxides, CrystEngComm, 21(2019), No. 6, p. 1042. doi: 10.1039/C8CE02022A
    [34]
    J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Resonant levels in bulk thermoelectric semiconductors, Energy Environ. Sci., 5(2012), No. 2, p. 5510. doi: 10.1039/C1EE02612G
    [35]
    A. Tkach, J. Resende, K.V. Saravanan, M.E. Costa, P. Diaz-Chao, E. Guilmeau, O. Okhay, and P.M. Vilarinho, Abnormal grain growth as a method to enhance the thermoelectric performance of Nb-doped strontium titanate ceramics, ACS Sustainable Chem. Eng., 6(2018), No. 12, p. 15988. doi: 10.1021/acssuschemeng.8b03875
    [36]
    L. Xu, M.P. Garrett, and B. Hu, Doping effects on internally coupled Seebeck coefficient, electrical, and thermal conductivities in aluminum-doped TiO2, J. Phys. Chem. C, 116(2012), No. 24, p. 13020. doi: 10.1021/jp302652c
    [37]
    X.Y. Wan, Z.M. Liu, L. Sun, P. Jiang, and X.H. Bao, Synergetic enhancement of thermoelectric performance in a Bi0.5Sb1.5Te3/SrTiO3 heterostructure, J. Mater. Chem. A, 8(2020), No. 21, p. 10839. doi: 10.1039/D0TA04296J
    [38]
    R.Q. Zhang, Z.Z. Zhou, Q. Yao, N. Qi, and Z.Q. Chen, Significant improvement in thermoelectric performance of SnSe/SnS via nano-heterostructures, Phys. Chem. Chem. Phys., 23(2021), No. 6, p. 3794. doi: 10.1039/D0CP05548D
    [39]
    C. Jung, B. Dutta, P. Dey, S.J. Jeon, S. Han, H.M. Lee, J.S. Park, S.H. Yi, and P.P. Choi, Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor, Nano Energy, 80(2021), art. No. 105518. doi: 10.1016/j.nanoen.2020.105518
    [40]
    G. Korotcenkov, V. Brinzari, and M.H. Ham, In2O3-based thermoelectric materials: The state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion, Crystals, 8(2018), No. 1, art. No. 14. doi: 10.3390/cryst8010014
    [41]
    K.H. Lim, K.W. Wong, Y. Liu, Y. Zhang, D. Cadavid, A. Cabot, and K.M. Ng, Critical role of nanoinclusions in silver selenide nanocomposites as a promising room temperature thermoelectric material, J. Mater. Chem. C, 7(2019), No. 9, p. 2646. doi: 10.1039/C9TC00163H
    [42]
    S. Yang, H.Z. Gu, Z.H. Li, and A. Huang, Enhanced thermoelectric performance in aluminum-doped zinc oxide by porous architecture and nanoinclusions, J. Eur. Ceram. Soc., 41(2021), No. 6, p. 3466. doi: 10.1016/j.jeurceramsoc.2021.01.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Share Article

    Article Metrics

    Article Views(2440) PDF Downloads(57) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return