Nana Yao, Yu Zhang, Xianhui Rao, Zhao Yang, Kun Zheng, Konrad Świerczek, and Hailei Zhao, A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 876-895. https://doi.org/10.1007/s12613-022-2422-7
Cite this article as:
Nana Yao, Yu Zhang, Xianhui Rao, Zhao Yang, Kun Zheng, Konrad Świerczek, and Hailei Zhao, A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 876-895. https://doi.org/10.1007/s12613-022-2422-7
Invited Review

A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries

+ Author Affiliations
  • Corresponding author:

    Hailei Zhao    E-mail: hlzhao@ustb.edu.cn

  • Received: 9 October 2021Revised: 8 January 2022Accepted: 17 January 2022Available online: 19 January 2022
  • With the advantages of abundant resources, high specific capacity, and relatively stable cycling performance, silicon suboxides (SiOx, x < 2) have been recently suggested as promising anodes for next-generation lithium-ion batteries (LIBs). SiOx exhibits superior storage capability because of the presence of silicon and smaller volume change upon charge/discharge than Si owing to the buffering effect of the initial lithiation products of inert lithium oxide and lithium silicates, enabling a stable cycle life of electrodes. However, significant improvements, such as overcoming issues related to volume changes in cycling and initial irreversible capacity loss and enhancing the ionic and electronic charge transport in poorly conducting SiOx electrodes, are still needed to achieve the satisfactory performance required for commercial applications. This review summarizes recent progress on the cycling performance and initial coulombic efficiency of SiOx. Advances in the design of particle morphology and composite composition, prelithiation and prereduction methods, and usage of electrolyte additives and optimized electrode binders are discussed. Perspectives on the promising research directions that might lead to further improvement of the electrochemical properties of SiOx-based anodes are noted. This paper can serve as a basis for the research and development of high-energy-density LIBs.
  • loading
  • [1]
    T.H. Kim, J.S. Park, S.K. Chang, S. Choi, J.H. Ryu, and H.K. Song, The current move of lithium ion batteries towards the next phase, Adv. Energy Mater., 2(2012), No. 7, p. 860. doi: 10.1002/aenm.201200028
    [2]
    G.E. Blomgren, The development and future of lithium ion batteries, J. Electrochem. Soc., 164(2016), No. 1, p. A5019.
    [3]
    Y. Yamada, K. Usui, C.H. Chiang, K. Kikuchi, K. Furukawa, and A. Yamada, General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes, ACS Appl. Mater. Interfaces, 6(2014), No. 14, p. 10892. doi: 10.1021/am5001163
    [4]
    W.H. Li, X.L. Sun, and Y. Yu, Si-, Ge-, Sn-based anode materials for lithium-ion batteries: From structure design to electrochemical performance, Small Methods, 1(2017), No. 3, art. No. 1600037. doi: 10.1002/smtd.201600037
    [5]
    D.Q. Liu, Z.J. Liu, X.W. Li, W.H. Xie, Q. Wang, Q.M. Liu, Y.J. Fu, and D.Y. He, Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries, Small, 13(2017), No. 45, art. No. 1702000. doi: 10.1002/smll.201702000
    [6]
    E. Radvanyi, W. Porcher, E.D. Vito, A. Montani, S. Franger, and S. Jouanneau Si Larbi, Failure mechanisms of nano-silicon anodes upon cycling: An electrode porosity evolution model, Phys. Chem. Chem. Phys., 16(2014), No. 32, p. 17142. doi: 10.1039/C4CP02324B
    [7]
    M.T. McDowell, S.W. Lee, W.D. Nix, and Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater., 25(2013), No. 36, p. 4966. doi: 10.1002/adma.201301795
    [8]
    Z.Y. Feng, W.J. Peng, Z.X. Wang, H.J. Guo, X.H. Li, G.C. Yan, and J.X. Wang, Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549. doi: 10.1007/s12613-021-2335-x
    [9]
    D.A. Agyeman, K. Song, G.H. Lee, M. Park, and Y.M. Kang, Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery, Adv. Energy Mater., 6(2016), No. 20, art. No. 1600904. doi: 10.1002/aenm.201600904
    [10]
    U. Kasavajjula, C.S. Wang, and A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163(2007), No. 2, p. 1003. doi: 10.1016/j.jpowsour.2006.09.084
    [11]
    Q. Liu, Z. Cui, R.J. Zou, J.H. Zhang, K.B. Xu, and J.Q. Hu, Surface coating constraint induced anisotropic swelling of silicon in Si–void@SiOx nanowire anode for lithium-ion batteries, Small, 13(2017), No. 13, art. No. 1603754. doi: 10.1002/smll.201603754
    [12]
    W.F. Ren, Y.H. Wang, Q.Q. Tan, J. Yu, U.J. Etim, Z.Y. Zhong, and F.B. Su, Nanosized Si particles with rich surface organic functional groups as high-performance Li-battery anodes, Electrochim. Acta, 320(2019), art. No. 134625. doi: 10.1016/j.electacta.2019.134625
    [13]
    M.X. Chen, W.Y. Cao, L.C. Wang, X. Ma, and K. Han, Chessboard-like silicon/graphite anodes with high cycling stability toward practical lithium-ion batteries, ACS Appl. Energy Mater., 4(2021), No. 1, p. 775. doi: 10.1021/acsaem.0c02621
    [14]
    H.P. Jia, C. Stock, R. Kloepsch, X. He, J.P. Badillo, O. Fromm, B. Vortmann, M. Winter, and T. Placke, Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 3, p. 1508. doi: 10.1021/am506486w
    [15]
    Q.K. Du, Q.X. Wu, H.X. Wang, X.J. Meng, Z.K. Ji, S. Zhao, W.W. Zhu, C. Liu, M. Ling, and C.D. Liang, Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1603. doi: 10.1007/s12613-020-2247-1
    [16]
    S. Kim, Y.K. Jeong, Y. Wang, H. Lee, and J.W. Choi, A “sticky” mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries, Adv. Mater., 30(2018), No. 26, art. No. 1707594. doi: 10.1002/adma.201707594
    [17]
    J.H. Xiong, N. Dupré, D. Mazouzi, D. Guyomard, L. Roué, and B. Lestriez, Influence of the polyacrylic acid binder neutralization degree on the initial electrochemical behavior of a silicon/graphite electrode, ACS Appl. Mater. Interfaces, 13(2021), No. 24, p. 28304. doi: 10.1021/acsami.1c06683
    [18]
    M. Miyachi, H. Yamamoto, and H. Kawai, Electrochemical properties and chemical structures of metal-doped SiO anodes for Li-ion rechargeable batteries, J. Electrochem. Soc., 154(2007), No. 4, art. No. A376. doi: 10.1149/1.2455963
    [19]
    H. Takezawa, K. Iwamoto, S. Ito, and H. Yoshizawa, Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries, J. Power Sources, 244(2013), p. 149. doi: 10.1016/j.jpowsour.2013.02.077
    [20]
    S.C. Jung, H.J. Kim, J.H. Kim, and Y.K. Han, Atomic-level understanding toward a high-capacity and high-power silicon oxide (SiO) material, J. Phys. Chem. C, 120(2016), No. 2, p. 886. doi: 10.1021/acs.jpcc.5b10589
    [21]
    P.P. Lü, H.L. Zhao, Z.L. Li, C.H. Gao, and Y. Zhang, Citrate-nitrate gel combustion synthesis of micro/nanostructured SiOx/C composite as high-performance lithium-ion battery anode, Solid State Ionics, 340(2019), art. No. 115024. doi: 10.1016/j.ssi.2019.115024
    [22]
    H. Guo, R. Mao, X.J. Yang, and J. Chen, Hollow nanotubular SiOx templated by cellulose fibers for lithium ion batteries, Electrochim. Acta, 74(2012), p. 271. doi: 10.1016/j.electacta.2012.04.086
    [23]
    H.Q. Wang, X.Q. Que, Y.N. Liu, X.X. Wu, Q.H. Yuan, J.Y. Lu, and W. Gan, Facile synthesis of yolk-shell structured SiOx/C@void@C nanospheres as anode for lithium-ion batteries, J. Alloys Compd., 874(2021), art. No. 159913. doi: 10.1016/j.jallcom.2021.159913
    [24]
    W.J. Zhang, Y.Q. Weng, W.C. Shen, R.T. Lü, F.Y. Kang, and Z.H. Huang, Scalable synthesis of lotus-seed-pod-like Si/SiOx@CNF: Applications in freestanding electrode and flexible full lithium-ion batteries, Carbon, 158(2020), p. 163. doi: 10.1016/j.carbon.2019.11.092
    [25]
    Y.J. Cai, Y.Y. Li, B.Y. Jin, A. Ali, M. Ling, D.G. Cheng, J.G. Lu, Y. Hou, Q.G. He, X.L. Zhan, F.Q. Chen, and Q.H. Zhang, Dual cross-linked fluorinated binder network for high-performance silicon and silicon oxide based anodes in lithium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 50, p. 46800. doi: 10.1021/acsami.9b16387
    [26]
    S.T. Guo, H. Li, Y.Q. Li, Y. Han, K.B. Chen, G.Z. Xu, Y.J. Zhu, and X.L. Hu, SiO2-enhanced structural stability and strong adhesion with a new binder of konjac glucomannan enables stable cycling of silicon anodes for lithium-ion batteries, Adv. Energy Mater., 8(2018), No. 24, art. No. 1800434. doi: 10.1002/aenm.201800434
    [27]
    J. Kirner, Y. Qin, L.H. Zhang, A. Jansen, and W.Q. Lu, Optimization of Graphite-SiO blend electrodes for lithium-ion batteries: Stable cycling enabled by single-walled carbon nanotube conductive additive, J. Power Sources, 450(2020), art. No. 227711. doi: 10.1016/j.jpowsour.2020.227711
    [28]
    H.R. Philipp, Optical properties of non-crystalline Si, SiO, SiOx and SiO2, J. Phys. Chem. Solids, 32(1971), No. 8, p. 1935. doi: 10.1016/S0022-3697(71)80159-2
    [29]
    H.R. Philipp, Optical and bonding model for non-crystalline SiOx and SiOxNy materials, J. Non Cryst. Solids, 8-10(1972), p. 627. doi: 10.1016/0022-3093(72)90202-5
    [30]
    R.J. Temkin, An analysis of the radial distribution function of SiOx, J. Non Cryst. Solids, 17(1975), No. 2, p. 215. doi: 10.1016/0022-3093(75)90052-6
    [31]
    M. Nakamura, Y. Mochizuki, K. Usami, Y. Itoh, and T. Nozaki, Infrared absorption spectra and compositions of evaporated silicon oxides (SiOx), Solid State Commun., 50(1984), No. 12, p. 1079. doi: 10.1016/0038-1098(84)90292-8
    [32]
    K. Schulmeister and W. Mader, TEM investigation on the structure of amorphous silicon monoxide, J. Non-Cryst. Solids, 320(2003), No. 1-3, p. 143. doi: 10.1016/S0022-3093(03)00029-2
    [33]
    A. Hohl, T. Wieder, P.A. van Aken, T.E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, and H. Fuess, An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO), J. Non Cryst. Solids, 320(2003), No. 1-3, p. 255. doi: 10.1016/S0022-3093(03)00031-0
    [34]
    J.H. Kim, C.M. Park, H. Kim, Y.J. Kim, and H.J. Sohn, Electrochemical behavior of SiO anode for Li secondary batteries, J. Electroanal. Chem., 661(2011), No. 1, p. 245. doi: 10.1016/j.jelechem.2011.08.010
    [35]
    A. Hirata, S. Kohara, T. Asada, M. Arao, C. Yogi, H. Imai, Y.W. Tan, T. Fujita, and M.W. Chen, Atomic-scale disproportionation in amorphous silicon monoxide, Nat. Commun., 7(2016), art. No. 11591. doi: 10.1038/ncomms11591
    [36]
    Y. Yao, J.J. Zhang, L.G. Xue, T. Huang, and A.S. Yu, Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries, J. Power Sources, 196(2011), No. 23, p. 10240. doi: 10.1016/j.jpowsour.2011.08.009
    [37]
    B.K. Guo, J. Shu, Z.X. Wang, H. Yang, L.H. Shi, Y.N. Liu, and L.Q. Chen, Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries, Electrochem. Commun., 10(2008), No. 12, p. 1876. doi: 10.1016/j.elecom.2008.09.032
    [38]
    Q. Sun, B. Zhang, and Z.W. Fu, Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries, Appl. Surf. Sci., 254(2008), No. 13, p. 3774. doi: 10.1016/j.apsusc.2007.11.058
    [39]
    T. Kim, S. Park, and S.M. Oh, Solid-state NMR and electrochemical dilatometry study on Li+ uptake/extraction mechanism in SiO electrode, J. Electrochem. Soc., 154(2007), No. 12, art. No. A1112. doi: 10.1149/1.2790282
    [40]
    Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, Kinetics of electrochemical insertion and extraction of lithium ion at SiO, J. Electrochem. Soc., 157(2010), No. 1, art. No. A26. doi: 10.1149/1.3247598
    [41]
    M. Yamada, A. Inaba, A. Ueda, K. Matsumoto, T. Iwasaki, and T. Ohzuku, Reaction mechanism of “SiO”-carbon composite-negative electrode for high-capacity lithium-ion batteries, J. Electrochem. Soc., 159(2012), No. 10, p. A1630. doi: 10.1149/2.018210jes
    [42]
    H. Jung, B.C. Yeo, K.R. Lee, and S.S. Han, Atomistics of the lithiation of oxidized silicon (SiOx) nanowires in reactive molecular dynamics simulations, Phys. Chem. Chem. Phys., 18(2016), No. 47, p. 32078. doi: 10.1039/C6CP06158C
    [43]
    H. Yamamura, K. Nobuhara, S. Nakanishi, H. Iba, and S. Okada, Investigation of the irreversible reaction mechanism and the reactive trigger on SiO anode material for lithium-ion battery, J. Ceram. Soc. Jpn., 119(2011), No. 1395, p. 855. doi: 10.2109/jcersj2.119.855
    [44]
    B.C. Yu, Y. Hwa, J.H. Kim, and H.J. Sohn, A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites, Electrochim. Acta, 117(2014), p. 426. doi: 10.1016/j.electacta.2013.11.158
    [45]
    B.C. Yu, Y. Hwa, C.M. Park, and H.J. Sohn, Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries, J. Mater. Chem. A, 1(2013), No. 15, art. No. 4820. doi: 10.1039/c3ta00045a
    [46]
    M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, and M. Shirakata, Analysis of SiO anodes for lithium-ion batteries, J. Electrochem. Soc., 152(2005), No. 10, art. No. A2089. doi: 10.1149/1.2013210
    [47]
    A. Veluchamy, C.H. Doh, D.H. Kim, J.H. Lee, D.J. Lee, K.H. Ha, H.M. Shin, B.S. Jin, H.S. Kim, S.I. Moon, and C.W. Park, Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries, J. Power Sources, 188(2009), No. 2, p. 574. doi: 10.1016/j.jpowsour.2008.11.137
    [48]
    X.L. Yang, Z.Y. Wen, X.X. Xu, B. Lin, and S.H. Huang, Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries, J. Power Sources, 164(2007), No. 2, p. 880. doi: 10.1016/j.jpowsour.2006.11.010
    [49]
    T. Chen, J. Wu, Q.L. Zhang, and X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries, J. Power Sources, 363(2017), p. 126. doi: 10.1016/j.jpowsour.2017.07.073
    [50]
    Z.H. Liu, Q. Yu, Y.L. Zhao, R.H. He, M. Xu, S.H. Feng, S.D. Li, L. Zhou, and L.Q. Mai, Silicon oxides: A promising family of anode materials for lithium-ion batteries, Chem. Soc. Rev., 48(2019), No. 1, p. 285. doi: 10.1039/C8CS00441B
    [51]
    T. Wang, X.T. Guo, H.Y. Duan, C.Y. Chen, and H. Pang, SiO-based (0 < x ≤ 2) composites for lithium-ion batteries, Chin. Chem. Lett., 31(2020), No. 3, p. 654. doi: 10.1016/j.cclet.2019.06.002
    [52]
    Y. Hwa, C.M. Park, and H.J. Sohn, Modified SiO as a high performance anode for Li-ion batteries, J. Power Sources, 222(2013), p. 129. doi: 10.1016/j.jpowsour.2012.08.060
    [53]
    J.K. Lee, W.Y. Yoon, and B.K. Kim, Kinetics of reaction products of silicon monoxide with controlled amount of Li-ion insertion at various current densities for Li-ion batteries, J. Electrochem. Soc., 161(2014), No. 6, p. A927. doi: 10.1149/2.040406jes
    [54]
    W.S. Chang, C.M. Park, J.H. Kim, Y.U. Kim, G. Jeong, and H.J. Sohn, Quartz (SiO2): A new energy storage anode material for Li-ion batteries, Energy Environ. Sci., 5(2012), No. 5, art. No. 6895. doi: 10.1039/c2ee00003b
    [55]
    K. Yasuda, Y. Kashitani, S. Kizaki, K. Takeshita, T. Fujita, and S. Shimosaki, Thermodynamic analysis and effect of crystallinity for silicon monoxide negative electrode for lithium ion batteries, J. Power Sources, 329(2016), p. 462. doi: 10.1016/j.jpowsour.2016.08.110
    [56]
    M. Yamada, A. Ueda, K. Matsumoto, and T. Ohzuku, Silicon-based negative electrode for high-capacity lithium-ion batteries: “SiO”-carbon composite, J. Electrochem. Soc., 158(2011), No. 4, art. No. A417. doi: 10.1149/1.3551539
    [57]
    T. Tashiro, M. Dougakiuchi, and M. Kambara, Instantaneous formation of SiOx nanocomposite for high capacity lithium ion batteries by enhanced disproportionation reaction during plasma spray physical vapor deposition, Sci. Technol. Adv. Mater., 17(2016), No. 1, p. 744. doi: 10.1080/14686996.2016.1240574
    [58]
    Z.H. Liu, D.D. Guan, Q. Yu, L. Xu, Z.C. Zhuang, T. Zhu, D.Y. Zhao, L. Zhou, and L.Q. Mai, Monodisperse and homogeneous SiOx/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries, Energy Storage Mater., 13(2018), p. 112. doi: 10.1016/j.ensm.2018.01.004
    [59]
    C.F. Guo, D.L. Wang, T.F. Liu, J.S. Zhu, and X.S. Lang, A three dimensional SiOx/C@RGO nanocomposite as a high energy anode material for lithium-ion batteries, J. Mater. Chem. A, 2(2014), No. 10, p. 3521. doi: 10.1039/C3TA13746E
    [60]
    W.J. Wu, J. Shi, Y.H. Liang, F. Liu, Y. Peng, and H.B. Yang, A low-cost and advanced SiOx–C composite with hierarchical structure as an anode material for lithium-ion batteries, Phys. Chem. Chem. Phys., 17(2015), No. 20, p. 13451. doi: 10.1039/C5CP01212K
    [61]
    M.S. Park, E. Park, J. Lee, G. Jeong, K.J. Kim, J.H. Kim, Y.J. Kim, and H. Kim, Hydrogen silsequioxane-derived Si/SiOx nanospheres for high-capacity lithium storage materials, ACS Appl. Mater. Interfaces, 6(2014), No. 12, p. 9608. doi: 10.1021/am5019429
    [62]
    Y.D. Cao, J.C. Bennett, R.A. Dunlap, and M.N. Obrovac, A simple synthesis route for high-capacity SiOx anode materials with tunable oxygen content for lithium-ion batteries, Chem. Mater., 30(2018), No. 21, p. 7418. doi: 10.1021/acs.chemmater.8b02977
    [63]
    S.S. Suh, W.Y. Yoon, D.H. Kim, S.U. Kwon, J.H. Kim, Y.U. Kim, C.U. Jeong, Y.Y. Chan, S.H. Kang, and J.K. Lee, Electrochemical behavior of SiOx anodes with variation of oxygen ratio for Li-ion batteries, Electrochim. Acta, 148(2014), p. 111. doi: 10.1016/j.electacta.2014.08.104
    [64]
    Y.J. Chen, J.B. Li, and J.H. Dai, Si and SiOx nanostructures formed via thermal evaporation, Chem. Phys. Lett., 344(2001), No. 5-6, p. 450. doi: 10.1016/S0009-2614(01)00742-4
    [65]
    L. Shi, W.K. Wang, A.B. Wang, K.G. Yuan, Z.Q. Jin, and Y.S. Yang, Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries, J. Power Sources, 318(2016), p. 184. doi: 10.1016/j.jpowsour.2016.03.111
    [66]
    F.T. Ferguson and J.A. Nuth, Vapor pressure and evaporation coefficient of silicon monoxide over a mixture of silicon and silica, J. Chem. Eng. Data, 57(2012), No. 3, p. 721. doi: 10.1021/je200693d
    [67]
    M.K. Kim, B.Y. Jang, J.S. Lee, J.S. Kim, and S. Nahm, Microstructures and electrochemical performances of nano-sized SiOx (1.18 ≤ x ≤ 1.83) as an anode material for a lithium(Li)-ion battery, J. Power Sources, 244(2013), p. 115. doi: 10.1016/j.jpowsour.2013.03.041
    [68]
    W.Y. Chen, R.V. Salvatierra, M.Q. Ren, J.H. Chen, M.G. Stanford, and J.M. Tour, Laser-induced silicon oxide for anode-free lithium metal batteries, Adv. Mater., 32(2020), No. 33, art. No. 2002850. doi: 10.1002/adma.202002850
    [69]
    Y.X. Liu, J.J. Ruan, F. Liu, Y.M. Fan, and P. Wang, Synthesis of SiOx/C composite with dual interface as Li-ion battery anode material, J. Alloys Compd., 802(2019), p. 704. doi: 10.1016/j.jallcom.2019.06.072
    [70]
    T. Xu, Q. Wang, J. Zhang, X.H. Xie, and B.J. Xia, Green synthesis of dual carbon conductive network-encapsulated hollow SiOx spheres for superior lithium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 22, p. 19959. doi: 10.1021/acsami.9b03070
    [71]
    P.P. Lü, H.L. Zhao, C.H. Gao, Z.H. Du, J. Wang, and X. Liu, SiOx–C dual-phase glass for lithium ion battery anode with high capacity and stable cycling performance, J. Power Sources, 274(2015), p. 542. doi: 10.1016/j.jpowsour.2014.10.077
    [72]
    P.P. Lü, H.L. Zhao, C.H. Gao, T.H. Zhang, and X. Liu, Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries, Electrochim. Acta, 152(2015), p. 345. doi: 10.1016/j.electacta.2014.11.149
    [73]
    Z.L. Li, H.L. Zhao, P.P. Lü, Z.J. Zhang, Y. Zhang, Z.H. Du, Y.Q. Teng, L.N. Zhao, and Z.M. Zhu, Watermelon-like structured SiOx–TiO2@C nanocomposite as a high-performance lithium-ion battery anode, Adv. Funct. Mater., 28(2018), No. 31, art. No. 1605711. doi: 10.1002/adfm.201605711
    [74]
    Z.L. Li, H.L. Zhao, J. Wang, T.H. Zhang, B.Y. Fu, Z.J. Zhang, and X. Tao, Rational structure design to realize high-performance SiOx@C anode material for lithium ion batteries, Nano Res., 13(2020), No. 2, p. 527. doi: 10.1007/s12274-020-2644-9
    [75]
    J. Li and J.G. Huang, A nanofibrous polypyrrole/silicon composite derived from cellulose substance as the anode material for lithium-ion batteries, Chem. Commun., 51(2015), No. 78, p. 14590. doi: 10.1039/C5CC05300E
    [76]
    W. Liu, J.Z. Wang, J.T. Wang, X.Z. Guo, and H. Yang, Three-dimensional nitrogen-doped carbon coated hierarchically porous silicon composite as lithium-ion battery anode, J. Alloys Compd., 874(2021), art. No. 159921. doi: 10.1016/j.jallcom.2021.159921
    [77]
    M.Y. Wang, D.L. Jia, J. Li, and J.G. Huang, Nanofibrous silicon/carbon composite sheet derived from cellulose substance as free-standing lithium-ion battery anodes, RSC Adv., 4(2014), No. 64, p. 33981. doi: 10.1039/C4RA05820H
    [78]
    D. Liu, C.R. Chen, Y.Y. Hu, J. Wu, D. Zheng, Z.Z. Xie, G.W. Wang, D.Y. Qu, J.S. Li, and D.Y. Qu, Reduced graphene-oxide/highly ordered mesoporous SiOx hybrid material as an anode material for lithium ion batteries, Electrochim. Acta, 273(2018), p. 26. doi: 10.1016/j.electacta.2018.04.030
    [79]
    J.Y. Zhang, P.P. Ma, Z.L. Hou, X.M. Zhang, and C.B. Li, One-step synthesis of SiOx@graphene composite material by a hydrothermal method for lithium-ion battery anodes, Energy Fuels, 34(2020), No. 3, p. 3895. doi: 10.1021/acs.energyfuels.9b04242
    [80]
    J.Y. Zhang, Z.L. Hou, X.M. Zhang, L.C. Zhang, and C.B. Li, Delicate construction of Si@SiOx composite materials by microwave hydrothermal for lithium-ion battery anodes, Ionics, 26(2020), No. 1, p. 69. doi: 10.1007/s11581-019-03204-0
    [81]
    Y.R. Ren and M.Q. Li, Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance, J. Power Sources, 306(2016), p. 459. doi: 10.1016/j.jpowsour.2015.12.064
    [82]
    C.H. Gao, H.L. Zhao, P.P. Lü, C.M. Wang, J. Wang, T.H. Zhang, and Q. Xia, Superior cycling performance of SiOx/C composite with arrayed mesoporous architecture as anode material for lithium-ion batteries, J. Electrochem. Soc., 161(2014), No. 14, p. A2216. doi: 10.1149/2.0911414jes
    [83]
    Y.R. Ren, X.M. Wu, and M.Q. Li, Highly stable SiOx/multiwall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries, Electrochim. Acta, 206(2016), p. 328. doi: 10.1016/j.electacta.2016.04.161
    [84]
    J. Wang, H.L. Zhao, J.C. He, C.M. Wang, and J. Wang, Nano-sized SiOx/C composite anode for lithium ion batteries, J. Power Sources, 196(2011), No. 10, p. 4811. doi: 10.1016/j.jpowsour.2011.01.053
    [85]
    Z.L. Li, N.N. Yao, H.L. Zhao, Z. Yang, B.Y. Fu, and J. Wang, Communication—self-template fabrication of porous Si/SiOx/C anode material for lithium-ion batteries, J. Electrochem. Soc., 167(2020), No. 2, art. No. 020555. doi: 10.1149/1945-7111/ab6fec
    [86]
    J. Hwang, K. Kim, W.S. Jung, H. Choi, and J.H. Kim, Facile and scalable synthesis of SiOx materials for Li-ion negative electrodes, J. Power Sources, 436(2019), art. No. 226883. doi: 10.1016/j.jpowsour.2019.226883
    [87]
    Y.D. Cao, R.A. Dunlap, and M.N. Obrovac, Electrochemistry and thermal behavior of SiOx made by reactive gas milling, J. Electrochem. Soc., 167(2020), No. 11, art. No. 110501. doi: 10.1149/1945-7111/ab9e83
    [88]
    D.H. Xu, W.Y. Chen, Y.L. Luo, H.S. Wei, C.J. Yang, X. Cai, Y.P. Fang, and X.Y. Yu, Amorphous TiO2 layer on silicon monoxide nanoparticles as stable and scalable core-shell anode materials for high performance lithium ion batteries, Appl. Surf. Sci., 479(2019), p. 980. doi: 10.1016/j.apsusc.2019.02.156
    [89]
    Z.X. Xiao, C.H. Yu, X.Q. Lin, X. Chen, C.X. Zhang, H.R. Jiang, R.F. Zhang, and F. Wei, TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material, Nano Energy, 77(2020), art. No. 105082. doi: 10.1016/j.nanoen.2020.105082
    [90]
    Z.Y. Wang, N. Yang, L. Ren, X.M. Wang, and X. Zhang, Core-shell structured SiOx@C with controllable mesopores as anode materials for lithium-ion batteries, Microporous Mesoporous Mater., 307(2020), art. No. 110480. doi: 10.1016/j.micromeso.2020.110480
    [91]
    L. Liu, X.X. Li, G. He, G.Q. Zhang, G.J. Su, and C.H. Fang, SiO@C/TiO2 nanospheres with dual stabilized architecture as anode material for high-performance Li-ion battery, J. Alloys Compd., 836(2020), art. No. 155407. doi: 10.1016/j.jallcom.2020.155407
    [92]
    J. Bae, D.S. Kim, H. Yoo, E. Park, Y.G. Lim, M.S. Park, Y.J. Kim, and H. Kim, High-performance Si/SiOx nanosphere anode material by multipurpose interfacial engineering with black TiO2–x, ACS Appl. Mater. Interfaces, 8(2016), No. 7, p. 4541. doi: 10.1021/acsami.5b10707
    [93]
    J.G. Guo, W. Zhai, Q. Sun, Q. Ai, J. Li, J. Cheng, L.N. Dai, and L.J. Ci, Facilely tunable core-shell Si@SiOx nanostructures prepared in aqueous solution for lithium ion battery anode, Electrochim. Acta, 342(2020), art. No. 136068. doi: 10.1016/j.electacta.2020.136068
    [94]
    F. Dou, Y.H. Weng, G.R. Chen, L.Y. Shi, H.J. Liu, and D.S. Zhang, Volume expansion restriction effects of thick TiO2/C hybrid coatings on micro-sized SiOx anode materials, Chem. Eng. J., 387(2020), art. No. 124106. doi: 10.1016/j.cej.2020.124106
    [95]
    Z.G. Teng, X.D. Su, Y.Y. Zheng, J. Sun, G.T. Chen, C.C. Tian, J.D. Wang, H. Li, Y.N. Zhao, and G.M. Lu, Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach, Chem. Mater., 25(2013), No. 1, p. 98. doi: 10.1021/cm303338v
    [96]
    J.I. Lee and S. Park, High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching, Nano Energy, 2(2013), No. 1, p. 146. doi: 10.1016/j.nanoen.2012.08.009
    [97]
    Y.Y. Zhang, G.W. Hu, Q. Yu, Z.H. Liu, C. Yu, L.S. Wu, L. Zhou, and L.Q. Mai, Polydopamine sacrificial layer mediated SiOx/C@C yolk@shell structure for durable lithium storage, Mater. Chem. Front., 4(2020), No. 6, p. 1656. doi: 10.1039/D0QM00120A
    [98]
    Z.H. Liu, Y.L. Zhao, R.H. He, W. Luo, J.S. Meng, Q. Yu, D.Y. Zhao, L. Zhou, and L.Q. Mai, Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage, Energy Storage Mater., 19(2019), p. 299. doi: 10.1016/j.ensm.2018.10.011
    [99]
    D.L. He, P. Li, W. Wang, Q. Wan, J. Zhang, K. Xi, X.M. Ma, Z.W. Liu, L. Zhang, and X.H. Qu, Collaborative design of hollow nanocubes, in situ cross-linked binder, and amorphous void@SiOx@C as a three-pronged strategy for ultrastable lithium storage, Small, 16(2020), No. 5, art. No. 1905736. doi: 10.1002/smll.201905736
    [100]
    J.Y. Zhang, X.M. Zhang, C.Q. Zhang, Z. Liu, J. Zheng, Y.H. Zuo, C.L. Xue, C.B. Li, and B.W. Cheng, Facile and efficient synthesis of a microsized SiOx/C core–shell composite as anode material for lithium ion batteries, Energy Fuels, 31(2017), No. 8, p. 8758. doi: 10.1021/acs.energyfuels.7b00775
    [101]
    S.J. Lee, H.J. Kim, T.H. Hwang, S. Choi, S.H. Park, E. Deniz, D.S. Jung, and J.W. Choi, Delicate structural control of Si–SiOx–C composite via high-speed spray pyrolysis for Li-ion battery anodes, Nano Lett., 17(2017), No. 3, p. 1870. doi: 10.1021/acs.nanolett.6b05191
    [102]
    R. Wang, J. Wang, S. Chen, C.L. Jiang, W. Bao, Y.F. Su, G.Q. Tan, and F. Wu, Toward mechanically stable silicon-based anodes using Si/SiOx@C hierarchical structures with well-controlled internal buffer voids, ACS Appl. Mater. Interfaces, 10(2018), No. 48, p. 41422. doi: 10.1021/acsami.8b16245
    [103]
    G. Li, J.Y. Li, F.S. Yue, Q. Xu, T.T. Zuo, Y.X. Yin, and Y.G. Guo, Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries, Nano Energy, 60(2019), p. 485. doi: 10.1016/j.nanoen.2019.03.077
    [104]
    X.L. He, W. Zhao, D.D. Li, P.J. Cai, Q.C. Zhuang, and Z.C. Ju, A long-cycle and high-rate Si/SiOx/nitrogen-doped carbon composite as an anode material for lithium-ion batteries, New J. Chem., 43(2019), No. 46, p. 18220. doi: 10.1039/C9NJ04238E
    [105]
    X. Gao, X.C. Sun, J.S. Liu, N. Gao, and H.D. Li, A carbon-based anode combining with SiOx and nanodiamond for high performance lithium ion battery, J. Energy Storage, 25(2019), art. No. 100901. doi: 10.1016/j.est.2019.100901
    [106]
    D. Liu, K. Fang, X.H. You, H.L. Tang, Z.Z. Xie, J.S. Li, X. Li, and D.Y. Qu, Formation of thin layer graphite wrapped meso-porous SiOx and its lithium storage application, Ceram. Int., 45(2019), No. 18, p. 24707. doi: 10.1016/j.ceramint.2019.08.210
    [107]
    Z.X. Xiao, C.H. Yu, X.Q. Lin, X. Chen, C.X. Zhang, and F. Wei, Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material, Carbon, 149(2019), p. 462. doi: 10.1016/j.carbon.2019.04.051
    [108]
    M.S. Han and J. Yu, Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes, J. Power Sources, 414(2019), p. 435. doi: 10.1016/j.jpowsour.2019.01.030
    [109]
    J.Y. Zhang, X.M. Zhang, Z.L. Hou, L.C. Zhang, and C.B. Li, Uniform SiOx/graphene composite materials for lithium ion battery anodes, J. Alloys Compd., 809(2019), art. No. 151798. doi: 10.1016/j.jallcom.2019.151798
    [110]
    L.Y. Chen, J. Zheng, S.Y. Lin, S. Khan, J.L. Huang, S.H. Liu, Z.R. Chen, D.C. Wu, and R.W. Fu, Synthesis of SiOx/C composite nanosheets as high-rate and stable anode materials for lithium-ion batteries, ACS Appl. Energy Mater., 3(2020), No. 4, p. 3562. doi: 10.1021/acsaem.0c00084
    [111]
    J.L. Cui, H.B. Zhang, Y.Y. Liu, S.H. Li, W.X. He, J.L. Hu, and J.C. Sun, Facile, economical and environment-friendly synthesis process of porous N-doped carbon/SiOx composite from rice husks as high-property anode for Li-ion batteries, Electrochim. Acta, 334(2020), art. No. 135619. doi: 10.1016/j.electacta.2020.135619
    [112]
    M.S. Han, Y.B. Mu, F. Yuan, J.B. Liang, T. Jiang, X.D. Bai, and J. Yu, Vertical graphene growth on uniformly dispersed sub-nanoscale SiOx/N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage, J. Mater. Chem. A, 8(2020), No. 7, p. 3822. doi: 10.1039/C9TA12554J
    [113]
    W.Y. Chen, D.H. Xu, S.J. Kuang, Z.Q. Wu, H. Hu, M.T. Zheng, and X.Y. Yu, Hierarchically porous SiOx/C and carbon materials from one biomass waste precursor toward high-performance lithium/sodium storage, J. Power Sources, 489(2021), art. No. 229459. doi: 10.1016/j.jpowsour.2021.229459
    [114]
    W.Y. Chen, H.F. Liu, S.J. Kuang, H.Y. Huang, T. Tang, M.T. Zheng, Y.P. Fang, and X.Y. Yu, In-situ low-temperature strategy from waste sugarcane leaves towards micro/meso-porous carbon network embedded nano Si–SiOx@C boosting high performances for lithium-ion batteries, Carbon, 179(2021), p. 377. doi: 10.1016/j.carbon.2021.04.043
    [115]
    J.W. Ge, Q.T. Tang, H.L. Shen, F. Zhou, H.B. Zhou, W.Y. Yang, J. Hong, B.B. Xu, and J. Saddique, Controllable preparation of disproportionated SiOx/C sheets with 3D network as high-performance anode materials of lithium ion battery, Appl. Surf. Sci., 552(2021), art. No. 149446. doi: 10.1016/j.apsusc.2021.149446
    [116]
    M. Xia, Y.R. Li, Y.F. Wu, H.B. Zhang, J.K. Yang, N. Zhou, Z. Zhou, and X. Xiong, Improving the electrochemical properties of a SiO@C/graphite composite anode for high-energy lithium-ion batteries by adding lithium fluoride, Appl. Surf. Sci., 480(2019), p. 410. doi: 10.1016/j.apsusc.2019.02.207
    [117]
    M.Q. Li, Y. Zeng, Y.R. Ren, C.M. Zeng, J.W. Gu, X.F. Feng, and H.Y. He, Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres, J. Power Sources, 288(2015), p. 53. doi: 10.1016/j.jpowsour.2015.04.127
    [118]
    C.H. Gao, H.L. Zhao, J. Wang, J. Wang, C.L. Yan, and H.Q. Yin, Self-assembly of hierarchical silicon suboxide nanoparticles encapsulated in nitrogen-doped carbon as high performance anode material for lithium-ion batteries, J. Electrochem. Soc., 166(2019), No. 4, p. A574. doi: 10.1149/2.0611904jes
    [119]
    W.L. Guo, X. Yan, F. Hou, L. Wen, Y.J. Dai, D.M. Yang, X.T. Jiang, J. Liu, J. Liang, and S.X. Dou, Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries, Carbon, 152(2019), p. 888. doi: 10.1016/j.carbon.2019.06.088
    [120]
    X.Y. Wang, Z.Y. Wen, Y. Liu, and X.W. Wu, A novel composite containing nanosized silicon and tin as anode material for lithium ion batteries, Electrochim. Acta, 54(2009), No. 20, p. 4662. doi: 10.1016/j.electacta.2009.03.055
    [121]
    X.Y. Wang, Z.Y. Wen, Y. Liu, X.G. Xu, and J. Lin, Preparation and characterization of a new nanosized silicon–nickel–graphite composite as anode material for lithium ion batteries, J. Power Sources, 189(2009), No. 1, p. 121. doi: 10.1016/j.jpowsour.2008.10.041
    [122]
    J.H. Yom, J.K. Lee, and W.Y. Yoon, Improved electrochemical behavior of W-coated SiO–graphite composite anode in lithium-ion secondary battery, J. Appl. Electrochem., 45(2015), No. 5, p. 397. doi: 10.1007/s10800-015-0810-7
    [123]
    J.K. Lee, J.H. Lee, B.K. Kim, and W.Y. Yoon, Electrochemical characteristics of diamond-like carbon/Cr double-layer coating on silicon monoxide-graphite composite anode for Li-ion batteries, Electrochim. Acta, 127(2014), p. 1. doi: 10.1016/j.electacta.2014.01.166
    [124]
    J.Z. Zhang, J. Zhang, T.Z. Bao, X.H. Xie, and B.J. Xia, Electrochemical and stress characteristics of SiO/Cu/expanded graphite composite as anodes for lithium ion batteries, J. Power Sources, 348(2017), p. 16. doi: 10.1016/j.jpowsour.2017.02.076
    [125]
    N. Zhou, Y.F. Wu, Q. Zhou, Y.R. Li, S.H. Liu, H.B. Zhang, Z. Zhou, and M. Xia, Enhanced cycling performance and rate capacity of SiO anode material by compositing with monoclinic TiO2 (B), Appl. Surf. Sci., 486(2019), p. 292. doi: 10.1016/j.apsusc.2019.05.025
    [126]
    G. Jeong, J.H. Kim, Y.U. Kim, and Y.J. Kim, Multifunctional TiO2 coating for a SiO anode in Li-ion batteries, J. Mater. Chem., 22(2012), No. 16, art. No. 7999. doi: 10.1039/c2jm15677f
    [127]
    M.J. Zhou, M.L. Gordin, S.R. Chen, T. Xu, J.X. Song, D.P. Lü, and D.H. Wang, Enhanced performance of SiO/Fe2O3 composite as an anode for rechargeable Li-ion batteries, Electrochem. Commun., 28(2013), p. 79. doi: 10.1016/j.elecom.2012.12.013
    [128]
    F. Cheng, G.J. Wang, Z.X. Sun, Y. Yu, F. Huang, C.L. Gong, H. Liu, G.W. Zheng, C.Q. Qin, and S. Wen, Carbon-coated SiO/ZrO2 composites as anode materials for lithium-ion batteries, Ceram. Int., 43(2017), No. 5, p. 4309. doi: 10.1016/j.ceramint.2016.12.074
    [129]
    Z.Q. Gu, W.L. Li, Y.X. Chen, X.H. Xia, and H.B. Liu, Synthesis of the microspherical structure of ternary SiOx@SnO2@C by a hydrothermal method as the anode for high-performance lithium-ion batteries, Sustain. Energy Fuels, 4(2020), No. 5, p. 2333. doi: 10.1039/D0SE00053A
    [130]
    B. Liu, A. Abouimrane, Y. Ren, M. Balasubramanian, D.P. Wang, Z.Z. Fang, and K. Amine, New anode material based on SiO–SnxCoyCz for lithium batteries, Chem. Mater., 24(2012), No. 24, p. 4653. doi: 10.1021/cm3017853
    [131]
    B. Liu, A. Abouimrane, D.E. Brown, X.F. Zhang, Y. Ren, Z.Z. Fang, and K. Amine, Mechanically alloyed composite anode materials based on SiO–SnxFeyCz for Li-ion batteries, J. Mater. Chem. A, 1(2013), No. 13, art. No. 4376. doi: 10.1039/c3ta00101f
    [132]
    L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, and J.R. Dahn, Colossal reversible volume changes in lithium alloys, Electrochem. Solid-State Lett., 4(2001), No. 9, art. No. A137. doi: 10.1149/1.1388178
    [133]
    Z.H. Lin, J.H. Li, Q.M. Huang, K. Xu, W.Z. Fan, L. Yu, Q.B. Xia, and W.S. Li, Insights into the interfacial instability between carbon-coated SiO anode and electrolyte in lithium-ion batteries, J. Phys. Chem. C, 123(2019), No. 20, p. 12902. doi: 10.1021/acs.jpcc.9b02509
    [134]
    T. Jaumann, J. Balach, U. Langklotz, V. Sauchuk, M. Fritsch, A. Michaelis, V. Teltevskij, D. Mikhailova, S. Oswald, M. Klose, G. Stephani, R. Hauser, J. Eckert, and L. Giebeler, Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes, Energy Storage Mater., 6(2017), p. 26. doi: 10.1016/j.ensm.2016.08.002
    [135]
    Z.X. Xu, J. Yang, H.P. Li, Y.N. Nuli, and J.L. Wang, Electrolytes for advanced lithium ion batteries using silicon-based anodes, J. Mater. Chem. A, 7(2019), No. 16, p. 9432. doi: 10.1039/C9TA01876J
    [136]
    Y.H. Sun, L. Fan, W.Y. Li, Y. Pang, J. Yang, C.X. Wang, and Y.Y. Xia, SiOx and carbon double-layer coated Si nanorods as anode materials for lithium-ion batteries, RSC Adv., 6(2016), No. 103, p. 101008. doi: 10.1039/C6RA21810E
    [137]
    Y.H. Liu, M. Okano, T. Mukai, K. Inoue, M. Yanagida, and T. Sakai, Improvement of thermal stability and safety of lithium ion battery using SiO anode material, J. Power Sources, 304(2016), p. 9. doi: 10.1016/j.jpowsour.2015.10.106
    [138]
    X. Huang and M.Q. Li, Multi-channel and porous SiO@N-doped C rods as anodes for high-performance lithium-ion batteries, Appl. Surf. Sci., 439(2018), p. 336. doi: 10.1016/j.apsusc.2017.12.184
    [139]
    L.B. Chen, K. Wang, X.H. Xie, and J.Y. Xie, Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive, Electrochem. Solid-State Lett., 9(2006), No. 11, art. No. A512. doi: 10.1149/1.2338771
    [140]
    N.S. Choi, K.H. Yew, K.Y. Lee, M. Sung, H. Kim, and S.S. Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, J. Power Sources, 161(2006), No. 2, p. 1254. doi: 10.1016/j.jpowsour.2006.05.049
    [141]
    H. Nakai, T. Kubota, A. Kita, and A. Kawashima, Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes, J. Electrochem. Soc., 158(2011), No. 7, p. A798. doi: 10.1149/1.3589300
    [142]
    T. Jaumann, J. Balach, M. Klose, S. Oswald, U. Langklotz, A. Michaelis, J. Eckert, and L. Giebeler, SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: The role of electrode preparation, FEC addition and binders, Phys. Chem. Chem. Phys., 17(2015), No. 38, p. 24956. doi: 10.1039/C5CP03672K
    [143]
    Y.Z. Yang, Z. Yang, Y.S. Xu, Z.L. Li, N.N. Yao, J. Wang, Z.H. Feng, K. Wang, J.Y. Xie, and H.L. Zhao, Synergistic effect of vinylene carbonate (VC) and LiNO3 as functional additives on interphase modulation for high performance SiO anodes, J. Power Sources, 514(2021), art. No. 230595. doi: 10.1016/j.jpowsour.2021.230595
    [144]
    J.Q. Shen, H.F. Chen, L. Yu, D.H. Huang, and Z.Y. Luo, 4, 5-difluoro-1, 3-dioxolan-2-one as an film forming additive on LiNi0.8Co0.15Al0.05O2/SiO@C full cells, J. Electroanal. Chem., 834(2019), p. 1. doi: 10.1016/j.jelechem.2018.12.026
    [145]
    K.W. Kim, J.G. Lee, H. Park, J. Kim, J.H. Ryu, Y.U. Kim, and S.M. Oh, Effect of lithium bis(oxalate)borate as an electrolyte additive on carbon-coated SiO negative electrode, J. Korean Electrochem. Soc., 17(2014), No. 1, p. 49. doi: 10.5229/JKES.2013.17.1.49
    [146]
    J.W. Song, C.C. Nguyen, and S.W. Song, Stabilized cycling performance of silicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries, RSC Adv., 2(2012), No. 5, art. No. 2003. doi: 10.1039/c2ra01183b
    [147]
    M.W. Forney, M.J. Ganter, J.W. Staub, R.D. Ridgley, and B.J. Landi, Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP), Nano Lett., 13(2013), No. 9, p. 4158. doi: 10.1021/nl401776d
    [148]
    C.R. Jarvis, M.J. Lain, M.V. Yakovleva, and Y. Gao, A prelithiated carbon anode for lithium-ion battery applications, J. Power Sources, 162(2006), No. 2, p. 800. doi: 10.1016/j.jpowsour.2005.07.051
    [149]
    M. Marinaro, M. Weinberger, and M. Wohlfahrt-Mehrens, Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries, Electrochim. Acta, 206(2016), p. 99. doi: 10.1016/j.electacta.2016.03.139
    [150]
    Q.R. Pan, P.J. Zuo, T.S. Mu, C.Y. Du, X.Q. Cheng, Y.L. Ma, Y.Z. Gao, and G.P. Yin, Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder, J. Power Sources, 347(2017), p. 170. doi: 10.1016/j.jpowsour.2017.02.061
    [151]
    H. Zhao, Y.B. Fu, M. Ling, Z. Jia, X.Y. Song, Z.H. Chen, J. Lu, K. Amine, and G. Liu, Conductive polymer binder-enabled SiO–SnxCoyCz anode for high-energy lithium-ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 21, p. 13373. doi: 10.1021/acsami.6b00312
    [152]
    T. Tabuchi, H. Yasuda, and M. Yamachi, Li-doping process for LixSiO-negative active material synthesized by chemical method for lithium-ion cells, J. Power Sources, 146(2005), No. 1-2, p. 507. doi: 10.1016/j.jpowsour.2005.03.100
    [153]
    G.W. Wang, F.F. Li, D. Liu, D. Zheng, Y. Luo, D.Y. Qu, T.Y. Ding, and D.Y. Qu, Chemical prelithiation of negative electrodes in ambient air for advanced lithium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 9, p. 8699. doi: 10.1021/acsami.8b19416
    [154]
    Y.F. Shen, J.M. Zhang, Y.F. Pu, H. Wang, B. Wang, J.F. Qian, Y.L. Cao, F.P. Zhong, X.P. Ai, and H.X. Yang, Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery, ACS Energy Lett., 4(2019), No. 7, p. 1717. doi: 10.1021/acsenergylett.9b00889
    [155]
    M.Y. Yan, G. Li, J. Zhang, Y.F. Tian, Y.X. Yin, C.J. Zhang, K.C. Jiang, Q. Xu, H.L. Li, and Y.G. Guo, Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 24, p. 27202. doi: 10.1021/acsami.0c05153
    [156]
    X.J. Feng, J. Yang, X.L. Yu, J.L. Wang, and Y.N. Nuli, Low-cost SiO-based anode using green binders for lithium ion batteries, J. Solid State Electrochem., 17(2013), No. 9, p. 2461. doi: 10.1007/s10008-013-2128-x
    [157]
    T.L. Kulova and A.M. Skundin, Elimination of irreversible capacity of amorphous silicon: Direct contact of the silicon and lithium metal, Russ. J. Electrochem., 46(2010), No. 4, p. 470. doi: 10.1134/S1023193510040129
    [158]
    Q.H. Meng, G. Li, J.P. Yue, Q. Xu, Y.X. Yin, and Y.G. Guo, High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy, ACS Appl. Mater. Interfaces, 11(2019), No. 35, p. 32062. doi: 10.1021/acsami.9b12086
    [159]
    H.J. Kim, S. Choi, S.J. Lee, M.W. Seo, J.G. Lee, E. Deniz, Y.J. Lee, E.K. Kim, and J.W. Choi, Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells, Nano Lett., 16(2016), No. 1, p. 282. doi: 10.1021/acs.nanolett.5b03776
    [160]
    M. Noh and J. Cho, Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material, J. Electrochem. Soc., 159(2012), No. 8, p. A1329. doi: 10.1149/2.085208jes
    [161]
    K. Park, B.C. Yu, and J.B. Goodenough, Li3N as a cathode additive for high-energy-density lithium-ion batteries, Adv. Energy Mater., 6(2016), No. 10, art. No. 1502534. doi: 10.1002/aenm.201502534
    [162]
    Y.T. Bie, J. Yang, J.L. Wang, J.J. Zhou, and Y.N. Nuli, Li2O2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries, Chem. Commun., 53(2017), No. 59, p. 8324. doi: 10.1039/C7CC04646D
    [163]
    G. Jeong, Y.U. Kim, S.A. Krachkovskiy, and C.K. Lee, A nanostructured SiAl0.2O anode material for lithium batteries, Chem. Mater., 22(2010), No. 19, p. 5570. doi: 10.1021/cm101747w
    [164]
    J. Nam, E. Kim, R. K, Y. Kim, and T.H. Kim, A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries, Sci. Rep., 10(2020), art. No. 14966. doi: 10.1038/s41598-020-71625-3
    [165]
    C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, and Z. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nat. Chem., 5(2013), No. 12, p. 1042. doi: 10.1038/nchem.1802
    [166]
    U.S. Vogl, P.K. Das, A.Z. Weber, M. Winter, R. Kostecki, and S.F. Lux, Mechanism of interactions between CMC binder and Si single crystal facets, Langmuir, 30(2014), No. 34, p. 10299. doi: 10.1021/la501791q
    [167]
    J. Yoon, D.X. Oh, C. Jo, J. Lee, and D.S. Hwang, Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking, Phys. Chem. Chem. Phys., 16(2014), No. 46, p. 25628. doi: 10.1039/C4CP03499F
    [168]
    D. Chen, R. Yi, S.R. Chen, T. Xu, M.L. Gordin, and D.H. Wang, Facile synthesis of graphene-silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes, Solid State Ionics, 254(2014), p. 65. doi: 10.1016/j.ssi.2013.11.020
    [169]
    R. Kuruba, M.K. Datta, K. Damodaran, P.H. Jampani, B. Gattu, P.P. Patel, P.M. Shanthi, S. Damle, and P.N. Kumta, Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon-carbon composite rechargeable Li-ion battery anodes, J. Power Sources, 298(2015), p. 331. doi: 10.1016/j.jpowsour.2015.07.102
    [170]
    L. Yue, L.Z. Zhang, and H.X. Zhong, Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries, J. Power Sources, 247(2014), p. 327. doi: 10.1016/j.jpowsour.2013.08.073
    [171]
    Y.K. Jeong, T.W. Kwon, I. Lee, T.S. Kim, A. Coskun, and J.W. Choi, Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries, Nano Lett., 14(2014), No. 2, p. 864. doi: 10.1021/nl404237j
    [172]
    S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries, J. Phys. Chem. C, 115(2011), No. 27, p. 13487. doi: 10.1021/jp201691g
    [173]
    A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, and G. Yushin, Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic acid, ACS Appl. Mater. Interfaces, 2(2010), No. 11, p. 3004. doi: 10.1021/am100871y
    [174]
    Z. Liu, S.J. Han, C. Xu, Y.W. Luo, N. Peng, C.Y. Qin, M.J. Zhou, W.Q. Wang, L.W. Chen, and S. Okada, In situ crosslinked PVA–PEI polymer binder for long-cycle silicon anodes in Li-ion batteries, RSC Adv., 6(2016), No. 72, p. 68371. doi: 10.1039/C6RA12232A
    [175]
    S. Huang, J.G. Ren, R. Liu, M. Yue, Y.Y. Huang, and G.H. Yuan, The progress of novel binder as a non-ignorable part to improve the performance of Si-based anodes for Li-ion batteries, Int. J. Energy Res., 42(2018), No. 3, p. 919. doi: 10.1002/er.3826
    [176]
    X.Y. Zhu, F. Zhang, L. Zhang, L.Y. Zhang, Y.Z. Song, T. Jiang, S. Sayed, C. Lu, X.G. Wang, J.Y. Sun, and Z.F. Liu, A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage, Adv. Funct. Mater., 28(2018), No. 11, art. No. 1705015. doi: 10.1002/adfm.201705015
    [177]
    L.X. Zhang, Z.H. Liu, G.L. Cui, and L.Q. Chen, Biomass-derived materials for electrochemical energy storages, Prog. Polym. Sci., 43(2015), p. 136. doi: 10.1016/j.progpolymsci.2014.09.003
    [178]
    Y. Cho, J. Kim, A. Elabd, S. Choi, K. Park, T.W. Kwon, J. Lee, K. Char, A. Coskun, and J.W. Choi, A pyrene–poly(acrylic acid)–polyrotaxane supramolecular binder network for high-performance silicon negative electrodes, Adv. Mater., 31(2019), No. 51, art. No. 1905048. doi: 10.1002/adma.201905048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(6767) PDF Downloads(431) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return