Cite this article as: |
Aixiang Wu, Zhuen Ruan, and Jiandong Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 717-726. https://doi.org/10.1007/s12613-022-2423-6 |
[1] |
C. Wang, D. Harbottle, Q.X. Liu, and Z.H. Xu, Current state of fine mineral tailings treatment: A critical review on theory and practice, Miner. Eng., 58(2014), p. 113. doi: 10.1016/j.mineng.2014.01.018
|
[2] |
J.C. Santamarina, L.A. Torres-Cruz, and R.C. Bachus, Why coal ash and tailings dam disasters occur, Science, 364(2019), No. 6440, p. 526. doi: 10.1126/science.aax1927
|
[3] |
L.H. Silva Rotta, E. Alcântara, E. Park, R.G. Negri, Y.N. Lin, N. Bernardo, T.S.G. Mendes, and C.R. Souza Filho, The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil, Int. J. Appl. Earth Obs., 90(2020), art. No. 102119. doi: 10.1016/j.jag.2020.102119
|
[4] |
J. Kiventerä, P. Perumal, J. Yliniemi, and M. Illikainen, Mine tailings as a raw material in alkali activation: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1009. doi: 10.1007/s12613-020-2129-6
|
[5] |
C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
|
[6] |
S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Clean. Prod., 247(2020), art. No. 119590. doi: 10.1016/j.jclepro.2019.119590
|
[7] |
A.X. Wu, Y. Yang, H.Y. Cheng, S.M. Chen, and Y. Han, Status and prospects of paste technology in China, Chin. J. Eng., 40(2018), No. 5, p. 517.
|
[8] |
Y.Y. Tan, E. Davide, Y.C. Zhou, W.D. Song, and X. Meng, Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 140. doi: 10.1007/s12613-019-1878-6
|
[9] |
H.Y. Cheng, S.C. Wu, H. Li, and X.Q. Zhang, Influence of time and temperature on rheology and flow performance of cemented paste backfill, Constr. Build. Mater., 231(2020), art. No. 117117. doi: 10.1016/j.conbuildmat.2019.117117
|
[10] |
A.X. Wu, Z.E. Ruan, R. Bürger, S.H. Yin, J.D. Wang, and Y. Wang, Optimization of flocculation and settling parameters of tailings slurry by response surface methodology, Miner. Eng., 156(2020), art. No. 106488. doi: 10.1016/j.mineng.2020.106488
|
[11] |
A.X. Wu and H.J. Wang, Theory and Technology of Cemented Paste Backfill in Metal Mines, Science Press, Beijing, 2015.
|
[12] |
A.X. Wu, Rheology of Paste in Metal Mines, Metallurgical Industry Press, Beijing, 2019.
|
[13] |
General Administration of Quality Supervision, People’s Republic of China, GB/T39489–2020: Technical Specification for the Total Tailings Paste Backfill, Standards Press of China, Beijing, 2020.
|
[14] |
F. Schoenbrunn and M. Bach, The development of paste thickening and its application to the minerals industry; An industry review, BHM Berg Und Hüttenmännische Monatshefte, 160(2015), No. 6, p. 257.
|
[15] |
H.Z. Jiao, A.X. Wu, H.J. Wang, S.P. Zhong, R.M. Ruan, and S.H. Yin, The solids concentration distribution in the deep cone thickener: A pilot scale test, Korean J. Chem. Eng., 30(2013), No. 2, p. 262. doi: 10.1007/s11814-012-0211-0
|
[16] |
J.C. Serbon, L. Mac-Namara, and F. Schoenbrunn, Application of the FLSmidth deep cone technology to the fertilizer plants in OCP, Procedia Eng., 138(2016), p. 314. doi: 10.1016/j.proeng.2016.02.090
|
[17] |
Z.E. Ruan, Y. Wang, A.X. Wu, S.H. Yin, and F. Jin, A theoretical model for the rake blockage mitigation in deep cone thickener: A case study of lead-zinc mine in China, Math. Probl. Eng., 2019(2019), art. No. 2130617. doi: 10.1155/2019/2130617
|
[18] |
Z.E. Ruan, A.X. Wu, R. Bürger, F. Betancourt, Y.M. Wang, Y. Wang, H.Z. Jiao, and S.K. Wang, Effect of interparticle interactions on the yield stress of thickened flocculated copper mineral tailings slurry, Powder Technol., 392(2021), p. 278. doi: 10.1016/j.powtec.2021.07.008
|
[19] |
Y. Wang, A.X. Wu, Z.E. Ruan, Z.H. Wang, Z.S. Wei, G.F. Yang, and Y.M. Wang, Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1430. doi: 10.1007/s12613-020-2116-y
|
[20] |
H. Li, A.X. Wu, H.J. Wang, H. Chen, and L.H. Yang, Changes in underflow solid fraction and yield stress in paste thickeners by circulation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 349. doi: 10.1007/s12613-020-2184-z
|
[21] |
H.J. Wang, L.H. Yang, H. Li, X. Zhou, and X.T. Wang, Using coupled rheometer-FBRM to study rheological properties and microstructure of cemented paste backfill, Adv. Mater. Sci. Eng., 2019(2019), art. No. 6813929. doi: 10.1155/2019/6813929
|
[22] |
L.H. Yang, H.J. Wang, A.X. Wu, H. Li, A.B. Tchamba, and T.A. Bier, Shear thinning and thickening of cemented paste backfill, Appl. Rheol., 29(2019), No. 1, p. 80. doi: 10.1515/arh-2019-0008
|
[23] |
L.H. Yang, H.J. Wang, H. Li, and X. Zhou, Effect of high mixing intensity on rheological properties of cemented paste backfill, Minerals, 9(2019), No. 4, art. No. 240. doi: 10.3390/min9040240
|
[24] |
T. Belem and M. Benzaazoua, Design and application of underground mine paste backfill technology, Geotech. Geol. Eng., 26(2008), No. 2, p. 147. doi: 10.1007/s10706-007-9154-3
|
[25] |
M. Fehrsen and R. Cooke, Paste fill pipeline distribution systems—Current status, [in] Rise of the Machines—The ‘State of the Art’ in Mining Mechanisation, Automation, Hydraulic Transportation and Communications, The South African Institute of Mining and Metallurgy, Johannesburg [2021-11-11]. https://www.saimm.co.za/Conferences/RiseOfMachines/026-Fehrsen.pdf
|
[26] |
J.W. Calderón-Hernández, A. Sinatora, H.G. de Melo, A.P. Chaves, E.S. Mano, L.S. Leal Filho, J.L. Paiva, A.S. Braga, and T.C. Souza Pinto, Hydraulic convey of iron ore slurry: Pipeline wear and ore particle degradation in function of pumping time, Wear, 450-451(2020), art. No. 203272. doi: 10.1016/j.wear.2020.203272
|
[27] |
A.X. Wu, Z.E. Ruan, Y.M. Wang, S.H. Yin, S.Y. Wang, Y. Wang, and J.D. Wang, Simulation of long-distance pipeline transportation properties of whole-tailings paste with high sliming, J. Cent. South Univ., 25(2018), No. 1, p. 141. doi: 10.1007/s11771-018-3724-9
|
[28] |
Q.L. Zhang, Q.S. Chen, and X.M. Wang, Cemented backfilling technology of paste-like based on aeolian sand and tailings, Minerals, 6(2016), No. 4, art. No. 132. doi: 10.3390/min6040132
|
[29] |
W. Sun, K.P. Hou, Z.Q. Yang, and Y.M. Wen, X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression, Constr. Build. Mater., 138(2017), p. 69. doi: 10.1016/j.conbuildmat.2017.01.088
|
[30] |
B.Q. Yan, F.H. Ren, M.F. Cai, and C. Qiao, Influence of new hydrophobic agent on the mechanical properties of modified cemented paste backfill, J. Mater. Res. Technol., 8(2019), No. 6, p. 5716. doi: 10.1016/j.jmrt.2019.09.039
|
[31] |
A. Ghirian and M. Fall, Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage, Int. J. Min. Sci. Technol., 26(2016), No. 5, p. 809. doi: 10.1016/j.ijmst.2016.05.039
|
[32] |
E. Yilmaz and M. Fall, Paste Tailings Management, Springer, Cham, 2017.
|
[33] |
C.C. Qi, A. Fourie, Q.S. Chen, X.L. Tang, Q.L. Zhang, and R.G. Gao, Data-driven modelling of the flocculation process on mineral processing tailings treatment, J. Clean. Prod., 196(2018), p. 505. doi: 10.1016/j.jclepro.2018.06.054
|
[34] |
C.C. Qi, Q.S. Chen, and S.S. Kim, Integrated and intelligent design framework for cemented paste backfill: A combination of robust machine learning modelling and multi-objective optimization, Miner. Eng., 155(2020), art. No. 106422. doi: 10.1016/j.mineng.2020.106422
|
[35] |
S.H. Yin, A.X. Wu, K.J. Hu, Y. Wang, and Y.K. Zhang, The effect of solid components on the rheological and mechanical properties of cemented paste backfill, Miner. Eng., 35(2012), p. 61. doi: 10.1016/j.mineng.2012.04.008
|
[36] |
D. Feys, R. Cepuritis, S. Jacobsen, K. Lesage, E. Secrieru, and A. Yahia, Measuring rheological properties of cement pastes: Most common techniques, procedures and challenges, RILEM Tech. Lett., 2(2017), p. 129. doi: 10.21809/rilemtechlett.2017.43
|
[37] |
A.X. Wu, H. Li, H.Y. Cheng, Y.M. Wang, C.P. Li, and Z.E. Ruan, Status and prospects of researches on rheology of paste backfill using unclassified-tailings (Part 1): Concepts, characteristics and models, Chin. J. Eng., 42(2020), No. 7, p. 803.
|
[38] |
B.H. Yan, C.P. Li, A.X. Wu, S.Y. Wang, and H.Z. Hou, Analysis on influencing factors of coarse particles migration in pipeline transportation of paste slurry, Chin. J. Nonferrous Met., 28(2018), No. 10, p. 2143. doi: 10.1016/S1003-6326(18)64859-9
|
[39] |
B.H. Yan, C.P. Li, A.X. Wu, H.J. Wang, and H.Z. Hou, Analysis of law of movement of coarse aggregate particles in pipeline transportation of paste, J. Cent. South Univ. Sci. Technol., 50(2019), No. 1, p. 172.
|
[40] |
L. Pullum, L. Graham, M. Rudman, and R. Hamilton, High concentration suspension pumping, Miner. Eng., 19(2006), No. 5, p. 471. doi: 10.1016/j.mineng.2005.08.010
|
[41] |
L. Pullum, D.V. Boger, and F. Sofra, Hydraulic mineral waste transport and storage, Annu. Rev. Fluid Mech., 50(2018), p. 157. doi: 10.1146/annurev-fluid-122316-045027
|
[42] |
H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 10. doi: 10.1007/s12613-019-1865-y
|
[43] |
A. Knight, F. Sofrà, A. Stickland, P. Scales, D. Lester, and R. Buscall, Variability of shear yield stress—Measurement and implications for mineral processing, [in] Proceedings of the 20th International Seminar on Paste and Thickened Tailings, Beijing, 2017.
|
[44] |
A.X. Wu, H. Li, H.Y. Cheng, Y.M. Wang, C.P. Li, and Z.E. Ruan, Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): Rheological measurement and prospects, Chin. J. Eng., 43(2021), No. 4, p. 451.
|
[45] |
W. Mbasha, I. Masalova, R. Haldenwang, and A. Malkin, The yield stress of cement pastes as obtained by different rheological approaches, Appl. Rheol., 25(2015), No. 5, art. No. 53517.
|
[46] |
H.J. Wang, Y. Wang, A.X. Wu, Y.G. Zhai, and H.Z. Jiao, Research of paste new definition from the viewpoint of saturation ratio and bleeding rate, J. Wuhan Univ. Technol., 33(2011), No. 6, p. 85.
|
[47] |
S.P. Usher and P.J. Scales, Steady state thickener modelling from the compressive yield stress and hindered settling function, Chem. Eng. J., 111(2005), No. 2-3, p. 253. doi: 10.1016/j.cej.2005.02.015
|
[48] |
R. Buscall and L.R. White, The consolidation of concentrated suspensions. Part 1.—The theory of sedimentation, J. Chem. Soc., Faraday Trans. 1, 83(1987), No. 3, p. 873. doi: 10.1039/f19878300873
|
[49] |
R.G. de Kretser, D.V. Boger, and P.J. Scales, Compressive rheology : An overview, Rheol. Rev., 2003, p. 125.
|
[50] |
M. Rahimi, A.A. Abdollahzadeh, and B. Rezai, The effect of particle size, pH, and flocculant dosage on the gel point, effective solid stress, and thickener performance of a coal-washing plant, Int. J. Coal Prep. Util., 35(2015), No. 3, p. 125. doi: 10.1080/19392699.2014.996288
|
[51] |
G.C. Li, Study on Size Change of Unclassified Tailings Flocs and Its Thickening Performance [Dissertation], University of Science and Technology Beijing, Beijing, 2019.
|
[52] |
G.J. Kynch, A theory of sedimentation, Trans. Faraday Soc., 48(1952), p. 166. doi: 10.1039/tf9524800166
|
[53] |
M. Nehdi and M.A. Rahman, Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction, Cem. Concr. Res., 34(2004), No. 11, p. 1993. doi: 10.1016/j.cemconres.2004.02.020
|
[54] |
H.S. Coe and G.H. Clevenger, Methods for determining the capacities of slime-settling tanks, Trans. Am. Inst. Min. Eng., 55(1916), p. 356.
|
[55] |
F. Moore, The rheology of ceramic slips and bodies, Trans. J. Br. Ceram. Soc., (1959), 9. 470.
|
[56] |
A.X. Wu, X.H. Liu, H.J. Wang, H.Z. Jiao, and S.Z. Liu, Calculation of resistance in total tailings paste piping transportation based on time-varying behavior, J. China Univ. Min. Technol., 42(2013), No. 5, p. 736.
|
[57] |
A.X. Wu, H.Y. Cheng, Y.M. Wang, H.J. Wang, X.H. Liu, and G.C. Li, Transport resistance characteristic of paste pipeline considering effect of wall slip, Chin. J. Nonferrous Met., 26(2016), No. 1, p. 180.
|
[58] |
D.M. Kalyon, Apparent slip and viscoplasticity of concentrated suspensions, J. Rheol., 49(2005), No. 3, p. 621. doi: 10.1122/1.1879043
|
[59] |
S. Haruna and M. Fall, Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer, Powder Technol., 360(2020), p. 731. doi: 10.1016/j.powtec.2019.09.025
|
[60] |
W.B. Xu, Y.L. Zhang, X.H. Zuo, and M. Hong, Time-dependent rheological and mechanical properties of silica fume modified cemented tailings backfill in low temperature environment, Cem. Concr. Compos., 114(2020), art. No. 103804. doi: 10.1016/j.cemconcomp.2020.103804
|
[61] |
H.Y. Cheng, Characteristics of Rheological Parameters and Pipe Resistance under the Time Temperature Effect [Dissertation], University of Science and Technology Beijing, Beijing, 2018.
|
[62] |
D. Wu, M. Fall, and S.J. Cai, Coupling temperature, cement hydration and rheological behaviour of fresh cemented paste backfill, Miner. Eng., 42(2013), p. 76. doi: 10.1016/j.mineng.2012.11.011
|
[63] |
M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol., 114(2010), No. 3-4, p. 397. doi: 10.1016/j.enggeo.2010.05.016
|
[64] |
Y. Wang, M. Fall, and A.X. Wu, Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate, Cem. Concr. Compos., 67(2016), p. 101. doi: 10.1016/j.cemconcomp.2016.01.005
|
[65] |
Z. Aldhafeeri, M. Fall, M. Pokharel, and Z. Pouramini, Temperature dependence of the reactivity of cemented paste backfill, Appl. Geochem., 72(2016), p. 10. doi: 10.1016/j.apgeochem.2016.06.005
|
[66] |
H.Y. Ran, Y.X. Guo, G.R. Feng, T.Y. Qi, and X.J. Du, Creep properties and resistivity-ultrasonic-AE responses of cemented gangue backfill column under high-stress area, Int. J. Min. Sci. Technol., 31(2021), No. 3, p. 401. doi: 10.1016/j.ijmst.2021.01.008
|
[67] |
Q.L. Chang, W.J. Tang, Y. Xu, and H.Q. Zhou, Research on the width of filling body in gob-side entry retaining with high-water materials, Int. J. Min. Sci. Technol., 28(2018), No. 3, p. 519. doi: 10.1016/j.ijmst.2017.12.016
|
[68] |
Q. Zhou and J.H. Liu, Study on creep property and damage evolution of rich-water packing material for mining, J. China Coal Soc., 43(2018), No. 7, p. 1878.
|
[69] |
S.J. Chen, X.Y. Liu, Y. Han, Y.H. Guo, and K.Q. Ren, Experimental study of creep hardening characteristic and mechanism of filling paste, Chin. J. Rock Mech. Eng., 35(2016), No. 3, p. 570.
|
[70] |
N. Yildirim, S. Shaler, W. West, E. Gajic, and R. Edgar, The usability of Burger body model on determination of oriented strand boards’ creep behavior, Adv. Compos. Lett., 29(2020), art. No. 2633366X2093589.
|
[71] |
W. Sun, Macro-micro Mechanical Behaviors of Subsidence Disposal Paste and Compatible Deformation Control [Dissertation], University of Science and Technology Beijing, Beijing, 2016.
|